Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2014

Open Access 01-12-2014 | Research article

Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut)

Authors: Lin Zhang, Hui-yuan Gao, Masaki Baba, Yoshihito Okada, Toru Okuyama, Li-jun Wu, Li-bin Zhan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2014

Login to get access

Abstract

Background

Castanea mollissima Blume (Chinese chestnut), as a food product is known for its various nutrients and functional values to the human health. The present study was carried out to analyze the anti-diabetic complications and anti-cancer activities of the bioactive compounds present in C. mollissima.

Methods

The kernels (CK), shells (CS) and involucres (CI) parts of C. Blume were extracted with 90% alcohol. The water suspension of these dried alcohol extracts were extracted using EtOAc and n-BuOH successively. The n-BuOH fraction of CI (CI-B) was isolated by silica gel column, Sephadex LH 20 column and preparative HPLC. The isolated compounds were identified by 1H-NMR, 13C-NMR, HMBC, HMQC and ESI-Q-TOF MS, All the fractions and compounds isolated were evaluated on human recombinant aldose reductase (HR-AR) assay, advanced glycation end products (AGEs) formation assay and human COLO 320 DM colon cancer cells inhibitory assay.

Results

CI-B was found to show a significant inhibitory effect in above biological screenings. Six flavonoids and three polyphenolic acids were obtained from CI-B. They were identified as kaempferol (1), kaempferol-3-O-[6''-O-(E)-p-coumaroyl]-β-D-glucopyranoside (2), kaempferol-3-O-[6''-O-(E)-p-coumaroyl]-β-D-galactopyranoside (3), kaempferol-3-O-[2''-O-(E)-p-coumaroyl]-β-D-glucopyranoside (4), kaempferol-3-O-[2", 6"-di-O-(E)-p-coumaroyl]-β-D-glucopyranoside (5) and kaempferol-3-O-[2", 6"-di-O-(E)-p-coumaroyl]-β-D-galactopyranoside (6), casuariin (7), casuarinin (8) and castalagin (9). Compounds 2–9 were found to show higher activity than quercetin (positive control) in the AR assay. Compounds 3–6, 8, and 9 showed stronger inhibitory effects than amino guanidine (positive control) on AGEs production. Compounds 4–6, 7, and 8 showed much higher cytotoxic activity than 5-fluorouracil (positive control) against the human COLO 320 DM colon cancer cells.

Conclusions

Our results suggest that flavonoids and polyphenolic acids possesses anti-diabetes complications and anti-cancer properties, and they were presumed to be the bioactive components of Castanea mollissima Blume.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang JH, He YJ: Advances and development trends of Chinese chestnut research at home and abroad. World For Res. 1999, 12: 7-12. Zhang JH, He YJ: Advances and development trends of Chinese chestnut research at home and abroad. World For Res. 1999, 12: 7-12.
2.
go back to reference Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA: Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107: 1106-1113. 10.1016/j.foodchem.2007.09.030.CrossRef Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA: Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107: 1106-1113. 10.1016/j.foodchem.2007.09.030.CrossRef
3.
go back to reference Zhang DS, Gao HY, Wang LB, Li D, Kuroyanagi M, Wu LJ: Flavonol glycosides from Castanea Mollissima Blume. Asian J Tradit Med. 2007, 25: 229-234. Zhang DS, Gao HY, Wang LB, Li D, Kuroyanagi M, Wu LJ: Flavonol glycosides from Castanea Mollissima Blume. Asian J Tradit Med. 2007, 25: 229-234.
4.
go back to reference Long ZM, Wu LJ, Sun BH, Huang J, Gao HY: Chemical constituents from kernel of Castanea mollissima. J Shenyang Pharm Univ. 2009, 26: 614-616. Long ZM, Wu LJ, Sun BH, Huang J, Gao HY: Chemical constituents from kernel of Castanea mollissima. J Shenyang Pharm Univ. 2009, 26: 614-616.
5.
go back to reference Long ZM, Wu LJ, Sun BH, Huang J, Gao HY: Chemical constituents from the seeds of Castanea mollissima Blume(III). J Shenyang Pharm Univ. 2008, 25: 883-885. 891 Long ZM, Wu LJ, Sun BH, Huang J, Gao HY: Chemical constituents from the seeds of Castanea mollissima Blume(III). J Shenyang Pharm Univ. 2008, 25: 883-885. 891
6.
go back to reference Lu C, Wu D, Gao HY, Sun BH, Huang J, Wu LJ: Isolation and identification of chemical constituents from testa of Castanea mollissima Blume. J Shenyang Pharm Univ. 2010, 27: 440-442. 462 Lu C, Wu D, Gao HY, Sun BH, Huang J, Wu LJ: Isolation and identification of chemical constituents from testa of Castanea mollissima Blume. J Shenyang Pharm Univ. 2010, 27: 440-442. 462
7.
go back to reference Amos AF, Mccarty DJ, Zimmet P: The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabetic Med. 1997, 14: 81-85.CrossRef Amos AF, Mccarty DJ, Zimmet P: The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabetic Med. 1997, 14: 81-85.CrossRef
8.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer statistics. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed Jemal A, Siegel R, Xu J, Ward E: Cancer statistics. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed
9.
go back to reference Susanna CLM, Edward GM, Alicja WD: Diabetes and Colorectal Cancer Incidence in the Cohort of Swedish Men. Diabetes Care. 2005, 28: 1805-1807. 10.2337/diacare.28.7.1805.CrossRef Susanna CLM, Edward GM, Alicja WD: Diabetes and Colorectal Cancer Incidence in the Cohort of Swedish Men. Diabetes Care. 2005, 28: 1805-1807. 10.2337/diacare.28.7.1805.CrossRef
10.
go back to reference Mujić A, Grdović N, Mujić I, Mihailović M, Živković J, Poznanović G, Vidaković M: Antioxidative effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells. Food Chem. 2011, 125: 841-849. 10.1016/j.foodchem.2010.08.068.CrossRef Mujić A, Grdović N, Mujić I, Mihailović M, Živković J, Poznanović G, Vidaković M: Antioxidative effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells. Food Chem. 2011, 125: 841-849. 10.1016/j.foodchem.2010.08.068.CrossRef
11.
go back to reference Wu H, Dushenkov S, Ho CT, Sang SM: Novel acetylated flavonoid glycosides from the leaves of Allium ursinum. Food Chem. 2009, 115: 592-595. 10.1016/j.foodchem.2008.12.058.CrossRef Wu H, Dushenkov S, Ho CT, Sang SM: Novel acetylated flavonoid glycosides from the leaves of Allium ursinum. Food Chem. 2009, 115: 592-595. 10.1016/j.foodchem.2008.12.058.CrossRef
12.
go back to reference Tian F, Li B, Jia BP, Zhang GZ, Luo YC: Identification and structure–activity relationship of gallotannins separated from Galla chinensis. Food Sci Tech. 2009, 42: 1289-1295. Tian F, Li B, Jia BP, Zhang GZ, Luo YC: Identification and structure–activity relationship of gallotannins separated from Galla chinensis. Food Sci Tech. 2009, 42: 1289-1295.
13.
go back to reference Puttaiah S, Zhang YM, Pilch HA, Pfahler C, Oyaito T, Sayre LM, Nagaraj RH: Detection of dideoxyosone intermediates of glycation using a monoclonal antibody: characterization of major epitope structures. Arch Biochem Biophys. 2006, 446: 186-10.1016/j.abb.2005.12.002.CrossRefPubMed Puttaiah S, Zhang YM, Pilch HA, Pfahler C, Oyaito T, Sayre LM, Nagaraj RH: Detection of dideoxyosone intermediates of glycation using a monoclonal antibody: characterization of major epitope structures. Arch Biochem Biophys. 2006, 446: 186-10.1016/j.abb.2005.12.002.CrossRefPubMed
14.
go back to reference Makita Z, Vlassara H, Ceramai HA, Bucala R: Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem. 1992, 267: 5133-PubMed Makita Z, Vlassara H, Ceramai HA, Bucala R: Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem. 1992, 267: 5133-PubMed
15.
go back to reference Cheng G, Bai YJ, Zhao YY: Flavonoids from Ziziphus jujuba Mill var. spinosa. Tetrahedron. 2000, 56: 8915-8920. 10.1016/S0040-4020(00)00842-5.CrossRef Cheng G, Bai YJ, Zhao YY: Flavonoids from Ziziphus jujuba Mill var. spinosa. Tetrahedron. 2000, 56: 8915-8920. 10.1016/S0040-4020(00)00842-5.CrossRef
16.
go back to reference Ito H, Iguchi A, Hatano T: Identification of urinary and intestinal bacterial metabolites of ellagitannin geraniin in rats. J Agric Food Chem. 2008, 56: 11668-11674. 10.1021/jf802152z.CrossRef Ito H, Iguchi A, Hatano T: Identification of urinary and intestinal bacterial metabolites of ellagitannin geraniin in rats. J Agric Food Chem. 2008, 56: 11668-11674. 10.1021/jf802152z.CrossRef
17.
go back to reference Glabasnia A, Hofmann T: Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J Agric Food Chem. 2006, 54: 3380-3390. 10.1021/jf052617b.CrossRefPubMed Glabasnia A, Hofmann T: Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J Agric Food Chem. 2006, 54: 3380-3390. 10.1021/jf052617b.CrossRefPubMed
18.
go back to reference Huang AL: Studies on the activities of pharmacological effect of flavonoids. Anhui Agric Sci Bull. 2007, 13: 71-72. Huang AL: Studies on the activities of pharmacological effect of flavonoids. Anhui Agric Sci Bull. 2007, 13: 71-72.
19.
go back to reference Matsuda H, Morikawa T, Toguchida I, Yoshikawa M: Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull. 2002, 50: 788-795. 10.1248/cpb.50.788.CrossRefPubMed Matsuda H, Morikawa T, Toguchida I, Yoshikawa M: Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull. 2002, 50: 788-795. 10.1248/cpb.50.788.CrossRefPubMed
20.
go back to reference Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, Vadivel V: Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from kenya. J Food Sci. 2011, 76: 560-567. 10.1111/j.1750-3841.2011.02116.x.CrossRef Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, Vadivel V: Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from kenya. J Food Sci. 2011, 76: 560-567. 10.1111/j.1750-3841.2011.02116.x.CrossRef
21.
go back to reference Cai YZ, Sun M, Xing J, Corke H: Antioxidant phenolic constituents in roots of rheum officinale and rubia cordifolia: structure-radical scavenging activity relationships. J Agric Food Chem. 2004, 52: 7884-7890. 10.1021/jf0489116.CrossRefPubMed Cai YZ, Sun M, Xing J, Corke H: Antioxidant phenolic constituents in roots of rheum officinale and rubia cordifolia: structure-radical scavenging activity relationships. J Agric Food Chem. 2004, 52: 7884-7890. 10.1021/jf0489116.CrossRefPubMed
22.
go back to reference Tian F, Li B, Jia BP, Zhang GZ, Luo YC: Identification and structure–activity relationship of gallotannins separated from Galla chinensis. Food Sci Tech. 2009, 42: 1289-1295. Tian F, Li B, Jia BP, Zhang GZ, Luo YC: Identification and structure–activity relationship of gallotannins separated from Galla chinensis. Food Sci Tech. 2009, 42: 1289-1295.
23.
go back to reference Birt DF, Hendrich S, Wang W: Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol Ther. 2001, 90: 157-177. 10.1016/S0163-7258(01)00137-1.CrossRefPubMed Birt DF, Hendrich S, Wang W: Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol Ther. 2001, 90: 157-177. 10.1016/S0163-7258(01)00137-1.CrossRefPubMed
Metadata
Title
Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut)
Authors
Lin Zhang
Hui-yuan Gao
Masaki Baba
Yoshihito Okada
Toru Okuyama
Li-jun Wu
Li-bin Zhan
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2014
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-14-422

Other articles of this Issue 1/2014

BMC Complementary Medicine and Therapies 1/2014 Go to the issue