Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Software

EXTraction of EMR numerical data: an efficient and generalizable tool to EXTEND clinical research

Authors: Tianrun Cai, Luwan Zhang, Nicole Yang, Kanako K. Kumamaru, Frank J. Rybicki, Tianxi Cai, Katherine P. Liao

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

Electronic medical records (EMR) contain numerical data important for clinical outcomes research, such as vital signs and cardiac ejection fractions (EF), which tend to be embedded in narrative clinical notes. In current practice, this data is often manually extracted for use in research studies. However, due to the large volume of notes in datasets, manually extracting numerical data often becomes infeasible. The objective of this study is to develop and validate a natural language processing (NLP) tool that can efficiently extract numerical clinical data from narrative notes.

Results

To validate the accuracy of the tool EXTraction of EMR Numerical Data (EXTEND), we developed a reference standard by manually extracting vital signs from 285 notes, EF values from 300 notes, glycated hemoglobin (HbA1C), and serum creatinine from 890 notes. For each parameter of interest, we calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 score of EXTEND using two metrics.
(1) completion of data extraction, and (2) accuracy of data extraction compared to the actual values in the note verified by chart review. At the note level, extraction by EXTEND was considered correct only if it accurately detected and extracted all values of interest in a note.
Using manually-annotated labels as the gold standard, the note-level accuracy of EXTEND in capturing the numerical vital sign values, EF, HbA1C and creatinine ranged from 0.88 to 0.95 for sensitivity, 0.95 to 1.0 for specificity, 0.95 to 1.0 for PPV, 0.89 to 0.99 for NPV, and 0.92 to 0.96 in F1 scores. Compared to the actual value level, the sensitivity, PPV, and F1 score of EXTEND ranged from 0.91 to 0.95, 0.95 to 1.0 and 0.95 to 0.96.

Conclusions

EXTEND is an efficient, flexible tool that uses knowledge-based rules to extract clinical numerical parameters with high accuracy. By increasing dictionary terms and developing new rules, the usage of EXTEND can easily be expanded to extract additional numerical data important in clinical outcomes research.
Literature
1.
go back to reference Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc. 1994;1(2):161–74.CrossRef Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc. 1994;1(2):161–74.CrossRef
2.
go back to reference Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc. 2010;17(1):19–24.CrossRef Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc. 2010;17(1):19–24.CrossRef
3.
go back to reference Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.CrossRef Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.CrossRef
4.
go back to reference Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17(3):229–36.CrossRef Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17(3):229–36.CrossRef
5.
go back to reference Torii M, Wagholikar K, Liu H. Using machine learning for concept extraction on clinical documents from multiple data sources. J Am Med Inform Assoc. 2011;18(5):580–7.CrossRef Torii M, Wagholikar K, Liu H. Using machine learning for concept extraction on clinical documents from multiple data sources. J Am Med Inform Assoc. 2011;18(5):580–7.CrossRef
6.
go back to reference Garvin JH, DuVall SL, South BR, Bray BE, Bolton D, Heavirland J, Pickard S, Heidenreich P, Shen S, Weir C, et al. Automated extraction of ejection fraction for quality measurement using regular expressions in unstructured information management architecture (UIMA) for heart failure. J Am Med Inform Assoc. 2012;19(5):859–66.CrossRef Garvin JH, DuVall SL, South BR, Bray BE, Bolton D, Heavirland J, Pickard S, Heidenreich P, Shen S, Weir C, et al. Automated extraction of ejection fraction for quality measurement using regular expressions in unstructured information management architecture (UIMA) for heart failure. J Am Med Inform Assoc. 2012;19(5):859–66.CrossRef
7.
go back to reference Xie F, Zheng C, Yuh-Jer Shen A, Chen W. Extracting and analyzing ejection fraction values from electronic echocardiography reports in a large health maintenance organization. Health Informatics J. 2017;23(4):319–28.CrossRef Xie F, Zheng C, Yuh-Jer Shen A, Chen W. Extracting and analyzing ejection fraction values from electronic echocardiography reports in a large health maintenance organization. Health Informatics J. 2017;23(4):319–28.CrossRef
8.
go back to reference Nath C, Albaghdadi MS, Jonnalagadda SR. A natural language processing tool for large-scale data extraction from echocardiography reports. PLoS One. 2016;11(4):e0153749.CrossRef Nath C, Albaghdadi MS, Jonnalagadda SR. A natural language processing tool for large-scale data extraction from echocardiography reports. PLoS One. 2016;11(4):e0153749.CrossRef
9.
go back to reference Kumamaru KK, Saboo SS, Aghayev A, Cai P, Quesada CG, George E, Hussain Z, Cai T, Rybicki FJ. CT pulmonary angiography-based scoring system to predict the prognosis of acute pulmonary embolism. J Cardiovasc Comput Tomogr. 2016;10(6):473–9.CrossRef Kumamaru KK, Saboo SS, Aghayev A, Cai P, Quesada CG, George E, Hussain Z, Cai T, Rybicki FJ. CT pulmonary angiography-based scoring system to predict the prognosis of acute pulmonary embolism. J Cardiovasc Comput Tomogr. 2016;10(6):473–9.CrossRef
10.
go back to reference Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the natural language toolkit. Sebastopol: O'Reilly Media, Inc.; 2009. Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the natural language toolkit. Sebastopol: O'Reilly Media, Inc.; 2009.
11.
go back to reference Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, Rybicki FJ, Mitsouras D. Natural language processing technologies in radiology research and clinical applications. RadioGraphics. 2016;36(1):176–91.CrossRef Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, Rybicki FJ, Mitsouras D. Natural language processing technologies in radiology research and clinical applications. RadioGraphics. 2016;36(1):176–91.CrossRef
12.
go back to reference Reddy CK, Aggarwal CC. Healthcare data analytics, vol. 239. Philadelphia: CRC Press; 2015.CrossRef Reddy CK, Aggarwal CC. Healthcare data analytics, vol. 239. Philadelphia: CRC Press; 2015.CrossRef
Metadata
Title
EXTraction of EMR numerical data: an efficient and generalizable tool to EXTEND clinical research
Authors
Tianrun Cai
Luwan Zhang
Nicole Yang
Kanako K. Kumamaru
Frank J. Rybicki
Tianxi Cai
Katherine P. Liao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0970-1

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue