Skip to main content
Top
Published in: Clinical & Experimental Metastasis 1/2017

01-01-2017 | Research Paper

Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases

Authors: P. Gómez-Contreras, J. M. Ramiro-Díaz, A. Sierra, C. Stipp, F. E. Domann, R. J. Weigel, G. Lal

Published in: Clinical & Experimental Metastasis | Issue 1/2017

Login to get access

Abstract

ECM1 overexpression is an independent predictor of poor prognosis in primary breast carcinomas, however the mechanisms by which ECM1 affects tumor progression have not been completely elucidated. ECM1 was silenced in the triple-negative breast cancer cell lines Hs578T and MDAMB231 using siRNA and the cells were evaluated for changes in morphology, migration, invasion and adhesion. Actin cytoskeleton alterations were evaluated by fluorescent staining and levels of activated Rho GTPases by pull down assays. ECM1 downregulation led to significantly diminished cell migration (p = 0.0005 for Hs578T and p = 0.02 for MDAMB231) and cell adhesion (p < 0.001 for Hs578T and p = 0.01 for MDAMB231). Cell invasion (matrigel) was reduced only in the Hs578T cells (p < 0.01). Silencing decreased the expression of the prometastatic molecules S100A4 and TGFβR2 in both cell lines and CD44 in Hs578T cells. ECM1–silenced cells also exhibited alterations in cell shape and showed bundles of F-actin across the cell (stress fibers) whereas NT-siRNA treated cells showed peripheral membrane ruffling. Downregulation of ECM1 was also associated with an increased F/G actin ratio, when compared to the cells transfected with NT siRNA (p < 0.001 for Hs578T and p < 0.00035 for MDAMB231) and a concomitant decline of activated Rho A in the Hs578T cells. Re-expression of S100A4 in ECM1-silenced cells rescued the phenotype in the Hs578T cells but not the MDAMB231 cells. We conclude that ECM1 is a key player in the metastatic process and regulates the actin cytoskeletal architecture of aggressive breast cancer cells at least in part via alterations in S100A4 and Rho A.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang L, Yu J, Ni J, Xu XM, Wang J, Ning H, Pei XF, Chen J, Yang S, Underhill CB et al (2003) Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200(1):57–67CrossRefPubMed Wang L, Yu J, Ni J, Xu XM, Wang J, Ning H, Pei XF, Chen J, Yang S, Underhill CB et al (2003) Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200(1):57–67CrossRefPubMed
2.
go back to reference Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A (2005) ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg 242(3):353–361PubMedPubMedCentral Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A (2005) ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg 242(3):353–361PubMedPubMedCentral
3.
go back to reference Lal G, Padmanabha L, Nicholson R, Smith BJ, Zhang L, Howe JR, Robinson RA, O’Dorisio MS (2008) ECM1 expression in thyroid tumors-A comparison of real-time RT-PCR and IHC. J Surg Res 149(1):62–68CrossRefPubMed Lal G, Padmanabha L, Nicholson R, Smith BJ, Zhang L, Howe JR, Robinson RA, O’Dorisio MS (2008) ECM1 expression in thyroid tumors-A comparison of real-time RT-PCR and IHC. J Surg Res 149(1):62–68CrossRefPubMed
4.
go back to reference Han Z, Lin GJ, Chi FL, Wang SY, Huang JM, Liu HJ, Zhang LR (2008) The relationship between the extracellular matrix and the angiogenesis and metastasis of laryngeal carcinoma. ORL J Otorhinolaryngol Relat Spec 70(6):352–358CrossRefPubMed Han Z, Lin GJ, Chi FL, Wang SY, Huang JM, Liu HJ, Zhang LR (2008) The relationship between the extracellular matrix and the angiogenesis and metastasis of laryngeal carcinoma. ORL J Otorhinolaryngol Relat Spec 70(6):352–358CrossRefPubMed
5.
go back to reference Chen H, Jia WD, Li JS, Wang W, Xu GL, Ma JL, Ren WH, Ge YS, Yu JH, Liu WB et al (2011) Extracellular matrix protein 1, a novel prognostic factor, is associated with metastatic potential of hepatocellular carcinoma. Med Oncol 28(Suppl 1):S318–325CrossRefPubMed Chen H, Jia WD, Li JS, Wang W, Xu GL, Ma JL, Ren WH, Ge YS, Yu JH, Liu WB et al (2011) Extracellular matrix protein 1, a novel prognostic factor, is associated with metastatic potential of hepatocellular carcinoma. Med Oncol 28(Suppl 1):S318–325CrossRefPubMed
6.
go back to reference Xiong GP, Zhang JX, Gu SP, Wu YB, Liu JF (2012) Overexpression of ECM1 contributes to migration and invasion in cholangiocarcinoma cell. Neoplasma 59(4):409–415CrossRefPubMed Xiong GP, Zhang JX, Gu SP, Wu YB, Liu JF (2012) Overexpression of ECM1 contributes to migration and invasion in cholangiocarcinoma cell. Neoplasma 59(4):409–415CrossRefPubMed
7.
go back to reference Han Z, Ni J, Smits P, Underhill CB, Xie B, Chen Y, Liu N, Tylzanowski P, Parmelee D, Feng P et al (2001) Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15(6):988–994CrossRefPubMed Han Z, Ni J, Smits P, Underhill CB, Xie B, Chen Y, Liu N, Tylzanowski P, Parmelee D, Feng P et al (2001) Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15(6):988–994CrossRefPubMed
8.
go back to reference Wu QW, She HQ, Liang J, Huang YF, Yang QM, Yang QL, Zhang ZM (2012) Expression and clinical significance of extracellular matrix protein 1 and vascular endothelial growth factor-C in lymphatic metastasis of human breast cancer. BMC Cancer 12:47CrossRefPubMedPubMedCentral Wu QW, She HQ, Liang J, Huang YF, Yang QM, Yang QL, Zhang ZM (2012) Expression and clinical significance of extracellular matrix protein 1 and vascular endothelial growth factor-C in lymphatic metastasis of human breast cancer. BMC Cancer 12:47CrossRefPubMedPubMedCentral
9.
go back to reference Wu Q, Li X, Yang H, Lu C, You J, Zhang Z (2014) Extracellular matrix protein 1 is correlated to carcinogenesis and lymphatic metastasis of human gastric cancer. World J Surg Oncol 12:132CrossRefPubMedPubMedCentral Wu Q, Li X, Yang H, Lu C, You J, Zhang Z (2014) Extracellular matrix protein 1 is correlated to carcinogenesis and lymphatic metastasis of human gastric cancer. World J Surg Oncol 12:132CrossRefPubMedPubMedCentral
10.
go back to reference Meng XY, Liu J, Lv F, Liu MQ, Wan JM (2015) Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma. Asian Pac J Cancer Prev APJCP 16(6):2313–2316CrossRefPubMed Meng XY, Liu J, Lv F, Liu MQ, Wan JM (2015) Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma. Asian Pac J Cancer Prev APJCP 16(6):2313–2316CrossRefPubMed
11.
go back to reference Lal G, Hashimi S, Smith BJ, Lynch CF, Zhang L, Robinson RA, Weigel RJ (2009) Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: a Hospital-based Cohort Study in Iowa. Ann Surg Oncol 16(8):2280–2287CrossRefPubMed Lal G, Hashimi S, Smith BJ, Lynch CF, Zhang L, Robinson RA, Weigel RJ (2009) Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: a Hospital-based Cohort Study in Iowa. Ann Surg Oncol 16(8):2280–2287CrossRefPubMed
12.
go back to reference Sercu S, Poumay Y, Herphelin F, Liekens J, Beek L, Zwijsen A, Wessagowit V, Huylebroeck D, McGrath JA, Merregaert J (2007) Functional redundancy of extracellular matrix protein 1 in epidermal differentiation. Br J Dermatol 157(4):771–775CrossRefPubMed Sercu S, Poumay Y, Herphelin F, Liekens J, Beek L, Zwijsen A, Wessagowit V, Huylebroeck D, McGrath JA, Merregaert J (2007) Functional redundancy of extracellular matrix protein 1 in epidermal differentiation. Br J Dermatol 157(4):771–775CrossRefPubMed
13.
go back to reference Lee KM, Nam K, Oh S, Lim J, Kim YP, Lee J, Yu JH, Ahn SH, Kim SB, Noh DY et al (2014) Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor-signaling. Breast Cancer Res 16(6):479CrossRefPubMedPubMedCentral Lee KM, Nam K, Oh S, Lim J, Kim YP, Lee J, Yu JH, Ahn SH, Kim SB, Noh DY et al (2014) Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor-signaling. Breast Cancer Res 16(6):479CrossRefPubMedPubMedCentral
14.
go back to reference Lee KM, Nam K, Oh S, Lim J, Kim RK, Shim D, Choi JH, Lee SJ, Yu JH, Lee JW et al (2015) ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene 34(50):6055–6065CrossRefPubMed Lee KM, Nam K, Oh S, Lim J, Kim RK, Shim D, Choi JH, Lee SJ, Yu JH, Lee JW et al (2015) ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene 34(50):6055–6065CrossRefPubMed
15.
go back to reference Sercu S, Zhang L, Merregaert J (2008) The extracellular matrix protein 1: its molecular interaction and implication in tumor progression. Cancer Invest 26(4):375–384CrossRefPubMed Sercu S, Zhang L, Merregaert J (2008) The extracellular matrix protein 1: its molecular interaction and implication in tumor progression. Cancer Invest 26(4):375–384CrossRefPubMed
16.
go back to reference Lal G, Contreras PG, Kulak M, Woodfield G, Bair T, Domann FE, Weigel RJ (2013) Human melanoma cells over-express extracellular matrix 1 (ECM1) which is regulated by TFAP2C. Plos ONE 8(9):e73953CrossRefPubMedPubMedCentral Lal G, Contreras PG, Kulak M, Woodfield G, Bair T, Domann FE, Weigel RJ (2013) Human melanoma cells over-express extracellular matrix 1 (ECM1) which is regulated by TFAP2C. Plos ONE 8(9):e73953CrossRefPubMedPubMedCentral
17.
go back to reference Lopez-Marure R, Contreras PG, Dillon JS (2011) Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol 660(2–3):268–274CrossRefPubMed Lopez-Marure R, Contreras PG, Dillon JS (2011) Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol 660(2–3):268–274CrossRefPubMed
18.
go back to reference Geback T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46(4):265–274PubMed Geback T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46(4):265–274PubMed
19.
go back to reference Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG (2008) Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol 295(3):C768–778CrossRefPubMedPubMedCentral Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG (2008) Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol 295(3):C768–778CrossRefPubMedPubMedCentral
20.
go back to reference Johnson JL, Winterwood N, DeMali KA, Stipp CS (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 122(Pt 13):2263–2273CrossRefPubMed Johnson JL, Winterwood N, DeMali KA, Stipp CS (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 122(Pt 13):2263–2273CrossRefPubMed
21.
go back to reference Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8(5):629–642CrossRefPubMed Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8(5):629–642CrossRefPubMed
22.
go back to reference Vigorito E, Billadeu DD, Savoy D, McAdam S, Doody G, Fort P, Turner M (2003) RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene 22(3):330–342CrossRefPubMed Vigorito E, Billadeu DD, Savoy D, McAdam S, Doody G, Fort P, Turner M (2003) RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene 22(3):330–342CrossRefPubMed
23.
go back to reference de Frutos S, Diaz JM, Nitta CH, Sherpa ML, Bosc LV (2011) Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am J Physiol Cell Physiol 301(2):C441–450CrossRefPubMedPubMedCentral de Frutos S, Diaz JM, Nitta CH, Sherpa ML, Bosc LV (2011) Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am J Physiol Cell Physiol 301(2):C441–450CrossRefPubMedPubMedCentral
24.
go back to reference Nemeth ZH, Deitch EA, Davidson MT, Szabo C, Vizi ES, Hasko G (2004) Disruption of the actin cytoskeleton results in nuclear factor-κB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J Cell Physiol 200(1):71–81CrossRefPubMed Nemeth ZH, Deitch EA, Davidson MT, Szabo C, Vizi ES, Hasko G (2004) Disruption of the actin cytoskeleton results in nuclear factor-κB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J Cell Physiol 200(1):71–81CrossRefPubMed
26.
go back to reference Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. Plos ONE 4(7):e6146CrossRefPubMedPubMedCentral Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. Plos ONE 4(7):e6146CrossRefPubMedPubMedCentral
27.
go back to reference Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263CrossRefPubMed Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263CrossRefPubMed
28.
30.
go back to reference Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81(5):682–687CrossRefPubMed Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81(5):682–687CrossRefPubMed
31.
go back to reference van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, Chandrasekharappa S, Strawderman M, Ethier SP, Merajver SD (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5(9):2511–2519PubMed van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, Chandrasekharappa S, Strawderman M, Ethier SP, Merajver SD (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5(9):2511–2519PubMed
32.
go back to reference Denoyelle C, Albanese P, Uzan G, Hong L, Vannier JP, Soria J, Soria C (2003) Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor of HMG-CoA reductase, on aggressive human breast cancer cells. Cell Signal 15(3):327–338CrossRefPubMed Denoyelle C, Albanese P, Uzan G, Hong L, Vannier JP, Soria J, Soria C (2003) Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor of HMG-CoA reductase, on aggressive human breast cancer cells. Cell Signal 15(3):327–338CrossRefPubMed
33.
go back to reference Chen M, Bresnick AR, O’Connor KL (2013) Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene 32(32):3754–3764CrossRefPubMed Chen M, Bresnick AR, O’Connor KL (2013) Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene 32(32):3754–3764CrossRefPubMed
34.
go back to reference Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011) RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193(4):655–665CrossRefPubMedPubMedCentral Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011) RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193(4):655–665CrossRefPubMedPubMedCentral
35.
go back to reference Simpson KJ, Dugan AS, Mercurio AM (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64(23):8694–8701CrossRefPubMed Simpson KJ, Dugan AS, Mercurio AM (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64(23):8694–8701CrossRefPubMed
36.
go back to reference Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ, van der Saag PT, van der Burg B (1995) Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 6(9):1151–1161PubMed Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ, van der Saag PT, van der Burg B (1995) Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 6(9):1151–1161PubMed
37.
go back to reference Laiho M, Weis MB, Massague J (1990) Concomitant loss of transforming growth factor (TGF)-beta receptor types I and II in TGF-beta-resistant cell mutants implicates both receptor types in signal transduction. J Biol Chem 265(30):18518–18524PubMed Laiho M, Weis MB, Massague J (1990) Concomitant loss of transforming growth factor (TGF)-beta receptor types I and II in TGF-beta-resistant cell mutants implicates both receptor types in signal transduction. J Biol Chem 265(30):18518–18524PubMed
38.
go back to reference Buck MB, Fritz P, Dippon J, Zugmaier G, Knabbe C (2004) Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 10(2):491–498CrossRefPubMed Buck MB, Fritz P, Dippon J, Zugmaier G, Knabbe C (2004) Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 10(2):491–498CrossRefPubMed
39.
40.
go back to reference Louderbough JM, Schroeder JA (2011) Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res 9(12):1573–1586CrossRefPubMed Louderbough JM, Schroeder JA (2011) Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res 9(12):1573–1586CrossRefPubMed
41.
go back to reference Afify A, Purnell P, Nguyen L (2009) Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol 86(2):95–100CrossRefPubMed Afify A, Purnell P, Nguyen L (2009) Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol 86(2):95–100CrossRefPubMed
42.
go back to reference Li DM, Feng YM (2011) Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 128(1):7–21CrossRefPubMed Li DM, Feng YM (2011) Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 128(1):7–21CrossRefPubMed
43.
Metadata
Title
Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases
Authors
P. Gómez-Contreras
J. M. Ramiro-Díaz
A. Sierra
C. Stipp
F. E. Domann
R. J. Weigel
G. Lal
Publication date
01-01-2017
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 1/2017
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-016-9827-5

Other articles of this Issue 1/2017

Clinical & Experimental Metastasis 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine