Skip to main content
Top
Published in: Annals of Intensive Care 1/2016

Open Access 01-12-2016 | Research

External validation of the APPS, a new and simple outcome prediction score in patients with the acute respiratory distress syndrome

Authors: Lieuwe D. Bos, Laura R. Schouten, Olaf L. Cremer, David S. Y. Ong, Marcus J. Schultz, MARS consortium

Published in: Annals of Intensive Care | Issue 1/2016

Login to get access

Abstract

Background

A recently developed prediction score based on age, arterial oxygen partial pressure to fractional inspired oxygen ratio (PaO2/FiO2) and plateau pressure (abbreviated as ‘APPS’) was shown to accurately predict mortality in patients diagnosed with the acute respiratory distress syndrome (ARDS). After thorough temporal external validation of the APPS, we tested the spatial external validity in a cohort of ARDS patients recruited during 3 years in two hospitals in the Netherlands.

Methods

Consecutive patients with moderate or severe ARDS according to the Berlin definition were included in this observational multicenter cohort study from the mixed medical-surgical ICUs of two university hospitals. The APPS was calculated per patient with the maximal airway pressure instead of the plateau pressure as all patients were ventilated in pressure-controlled mode. The predictive accuracy for hospital mortality was evaluated by calculating the area under the receiver operating characteristics curve (AUC-ROC). Additionally, the score was recalibrated and reassessed.

Results

In total, 439 patients with moderate or severe ARDS were analyzed. All-cause hospital mortality was 43 %. The APPS predicted all-cause hospital mortality with moderate accuracy, with an AUC-ROC of 0.62 [95 % confidence interval (CI) 0.56–0.67]. Calibration was moderate using the original cutoff values (Hosmer–Lemeshow goodness of fit P < 0.001), and recalibration was performed for the cutoff value for age and plateau pressure. This resulted in good calibration (P = 1.0), but predictive accuracy did not improve (AUC-ROC 0.63, 95 % CI 0.58–0.68).

Conclusions

The predictive accuracy for all-cause hospital mortality of the APPS was moderate, also after recalibration of the score, and thus the APPS does not seem to be fitted for that purpose. The APPS might serve as simple tool for stratification of mortality in patients with moderate or severe ARDS. Without recalibrations, the performance of the APPS was moderate and we should therefore hesitate to blindly apply the score to other cohorts of ARDS patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRefPubMed Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRefPubMed
3.
go back to reference Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.CrossRefPubMedPubMedCentral Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.CrossRefPubMedPubMedCentral
4.
go back to reference Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.CrossRefPubMedPubMedCentral Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.CrossRefPubMedPubMedCentral
9.
go back to reference Hernu R, Wallet F, Thiollière F, et al. An attempt to validate the modification of the American-European consensus definition of acute lung injury/acute respiratory distress syndrome by the Berlin definition in a university hospital. [Internet]. Intensive Care Med. 2013;39:2161–70 [cited 2015 Mar 30]. http://www.ncbi.nlm.nih.gov/pubmed/24114319. Hernu R, Wallet F, Thiollière F, et al. An attempt to validate the modification of the American-European consensus definition of acute lung injury/acute respiratory distress syndrome by the Berlin definition in a university hospital. [Internet]. Intensive Care Med. 2013;39:2161–70 [cited 2015 Mar 30]. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24114319.
10.
go back to reference Villar J, Ambrós A, Soler J, Martínez D, Ferrando C, Solano R, et al. Age, PaO2 /FIO2, and Plateau pressure score: a proposal for a simple outcome score in patients with the acute respiratory distress syndrome. Crit Care Med. 2016;44:1361–9.CrossRefPubMed Villar J, Ambrós A, Soler J, Martínez D, Ferrando C, Solano R, et al. Age, PaO2 /FIO2, and Plateau pressure score: a proposal for a simple outcome score in patients with the acute respiratory distress syndrome. Crit Care Med. 2016;44:1361–9.CrossRefPubMed
12.
13.
go back to reference National Heart and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network L. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRef National Heart and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network L. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRef
15.
go back to reference Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for Some Traditional and Novel Measures. Epidemiology. 2013;21:128–38.CrossRef Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for Some Traditional and Novel Measures. Epidemiology. 2013;21:128–38.CrossRef
16.
go back to reference Chatburn RL, Volsko TA, et al. Documentation issues for mechanical ventilation in pressure-control modes. Respir Care. 2010;55:1705–16.PubMed Chatburn RL, Volsko TA, et al. Documentation issues for mechanical ventilation in pressure-control modes. Respir Care. 2010;55:1705–16.PubMed
17.
go back to reference Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest. 2015;148:340–55.CrossRefPubMed Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest. 2015;148:340–55.CrossRefPubMed
18.
go back to reference ARDS-Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–8.CrossRef ARDS-Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–8.CrossRef
Metadata
Title
External validation of the APPS, a new and simple outcome prediction score in patients with the acute respiratory distress syndrome
Authors
Lieuwe D. Bos
Laura R. Schouten
Olaf L. Cremer
David S. Y. Ong
Marcus J. Schultz
MARS consortium
Publication date
01-12-2016
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2016
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-016-0190-0

Other articles of this Issue 1/2016

Annals of Intensive Care 1/2016 Go to the issue