Skip to main content
Top
Published in: International Journal of Hematology 4/2014

01-10-2014 | Original Article

Expressional changes of genes and miRNA in common megakaryocyte-erythroid progenitors from lower-risk myelodysplastic syndrome

Authors: Kazuhiro Maki, Ko Sasaki, Yasunobu Nagata, Fusako Nagasawa, Yuka Nakamura, Seishi Ogawa, Kinuko Mitani

Published in: International Journal of Hematology | Issue 4/2014

Login to get access

Abstract

Myelodysplastic syndrome (MDS) is a stem cell tumor characterized by dysplastic features and ineffective hematopoiesis in the early phase and leukemic progression in the late phase. Speculating that differences in the expression of genes and microRNA (miRNA) in control and MDS-derived erythroid progenitors may cause ineffective erythropoiesis, we sorted common megakaryocyte-erythroid progenitors (MEPs) in bone marrow cells from three lower-risk MDS patients, and compared expression levels of genes and miRNA with those from controls. In apoptosis-related pathways, the expression of some pro-apoptotic genes, such as cell death-inducing DFFA-like effector A, caspase 5, and Fas ligand, was elevated in MDS-derived MEPs, while those of anti-apoptotic CD40 and tumor necrosis factor were lower. In hematopoiesis-regulating pathways, RUNX1 and ETV6 genes showed reduced expression. Expression profiling revealed that three and 35 miRNAs were significantly up- and down-regulated in MDS-derived MEPs. MIR9 exhibited robust expression in MEPs and CD71+GlyA+ erythroid cells derived from one of the three patients. Interestingly, overexpression of MIR9 inhibited the accumulation of hemoglobin in UT-7/GM cells. Some of these alterations in gene and miRNA expression may contribute to the pathogenesis of ineffective hematopoiesis in lower-risk MDS and provide molecular markers for sub-classification and making a prognosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yamazaki H, Nakao S. Border between aplastic anemia and myelodysplastic syndrome. Int J Hematol. 2013;97:558–63.PubMedCrossRef Yamazaki H, Nakao S. Border between aplastic anemia and myelodysplastic syndrome. Int J Hematol. 2013;97:558–63.PubMedCrossRef
2.
go back to reference Yamazaki J, Issa JP. Epigenetic aspects of MDS and its molecular targeted therapy. Int J Hematol. 2013;97:175–82.PubMedCrossRef Yamazaki J, Issa JP. Epigenetic aspects of MDS and its molecular targeted therapy. Int J Hematol. 2013;97:175–82.PubMedCrossRef
3.
go back to reference Daver N, Strati P, Jabbour E, Kadia T, Luthra R, Wang S, et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88:56–9.PubMedCrossRefPubMedCentral Daver N, Strati P, Jabbour E, Kadia T, Luthra R, Wang S, et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88:56–9.PubMedCrossRefPubMedCentral
4.
go back to reference Hirai H, Kobayashi Y, Mano H, Hagiwara K, Maru Y, Omine M, et al. A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome. Nature. 1987;327:430–2.PubMedCrossRef Hirai H, Kobayashi Y, Mano H, Hagiwara K, Maru Y, Omine M, et al. A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome. Nature. 1987;327:430–2.PubMedCrossRef
5.
go back to reference Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N, Kurokawa M. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 2013;97:726–34.PubMedCrossRef Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N, Kurokawa M. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 2013;97:726–34.PubMedCrossRef
6.
7.
go back to reference Adamson DJ, Dawson AA, Bennett B, King DJ, Haites NE. p53 mutation in the myelodysplastic syndromes. Br J Haematol. 1995;89:61–6.PubMedCrossRef Adamson DJ, Dawson AA, Bennett B, King DJ, Haites NE. p53 mutation in the myelodysplastic syndromes. Br J Haematol. 1995;89:61–6.PubMedCrossRef
8.
go back to reference Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25:1153–8.PubMedCrossRefPubMedCentral Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25:1153–8.PubMedCrossRefPubMedCentral
9.
go back to reference Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.PubMedCrossRef Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.PubMedCrossRef
10.
go back to reference Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41:838–42.PubMedCrossRef Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41:838–42.PubMedCrossRef
11.
go back to reference Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B, et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia. 2010;24:1094–6.PubMedCrossRef Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B, et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia. 2010;24:1094–6.PubMedCrossRef
12.
go back to reference Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.PubMedCrossRef Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.PubMedCrossRef
13.
go back to reference Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6.PubMedCrossRef Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6.PubMedCrossRef
14.
go back to reference Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42:665–7.PubMedCrossRef Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42:665–7.PubMedCrossRef
15.
go back to reference Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.PubMedCrossRef Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.PubMedCrossRef
16.
go back to reference Dunbar AJ, Gondek LP, O’Keefe CL, Makishima H, Rataul MS, Szpurka H, et al. 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res. 2008;68:10349–57.PubMedCrossRefPubMedCentral Dunbar AJ, Gondek LP, O’Keefe CL, Makishima H, Rataul MS, Szpurka H, et al. 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res. 2008;68:10349–57.PubMedCrossRefPubMedCentral
17.
go back to reference Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460:904–8.PubMedCrossRef Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460:904–8.PubMedCrossRef
18.
go back to reference Sanada M, Ogawa S. Genome-wide analysis of myelodysplastic syndromes. Curr Pharm Des. 2012;18:3163–9.PubMedCrossRef Sanada M, Ogawa S. Genome-wide analysis of myelodysplastic syndromes. Curr Pharm Des. 2012;18:3163–9.PubMedCrossRef
19.
go back to reference Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, et al. miR-21 mediates hematopoietic suppression in MDS by activating TGF-beta signaling. Blood. 2013;121:2875–81.PubMedCrossRefPubMedCentral Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, et al. miR-21 mediates hematopoietic suppression in MDS by activating TGF-beta signaling. Blood. 2013;121:2875–81.PubMedCrossRefPubMedCentral
20.
go back to reference Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.PubMedCrossRefPubMedCentral Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.PubMedCrossRefPubMedCentral
21.
go back to reference Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell. 2008;14:843–53.PubMedCrossRefPubMedCentral Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell. 2008;14:843–53.PubMedCrossRefPubMedCentral
22.
go back to reference Maki K, Yamagata T, Sugita F, Nakamura Y, Sasaki K, Mitani K. Aberrant expression of MIR9 indicates poor prognosis in acute myeloid leukaemia. Br J Haematol. 2012;158:283–5.PubMedCrossRef Maki K, Yamagata T, Sugita F, Nakamura Y, Sasaki K, Mitani K. Aberrant expression of MIR9 indicates poor prognosis in acute myeloid leukaemia. Br J Haematol. 2012;158:283–5.PubMedCrossRef
23.
go back to reference Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, et al. Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood. 2001;98:422–7.PubMedCrossRef Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, et al. Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood. 2001;98:422–7.PubMedCrossRef
24.
go back to reference Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood. 2002;100:3553–60.PubMedCrossRef Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood. 2002;100:3553–60.PubMedCrossRef
25.
go back to reference Chen G, Zeng W, Miyazato A, Billings E, Maciejewski JP, Kajigaya S, et al. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood. 2004;104:4210–8.PubMedCrossRef Chen G, Zeng W, Miyazato A, Billings E, Maciejewski JP, Kajigaya S, et al. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood. 2004;104:4210–8.PubMedCrossRef
26.
go back to reference Abe S, Yamamoto K, Hasegawa M, Inoue M, Kurata M, Hirokawa K, et al. Bone marrow cells of myelodysplastic syndromes exhibit significant expression of apollon, livin and ILP-2 with reduction after transformation to overt leukemia. Leuk Res. 2005;29:1095–6.PubMedCrossRef Abe S, Yamamoto K, Hasegawa M, Inoue M, Kurata M, Hirokawa K, et al. Bone marrow cells of myelodysplastic syndromes exhibit significant expression of apollon, livin and ILP-2 with reduction after transformation to overt leukemia. Leuk Res. 2005;29:1095–6.PubMedCrossRef
27.
go back to reference Dallman C, Johnson PW, Packham G. Differential regulation of cell survival by CD40. Apoptosis. 2003;8:45–53.PubMedCrossRef Dallman C, Johnson PW, Packham G. Differential regulation of cell survival by CD40. Apoptosis. 2003;8:45–53.PubMedCrossRef
28.
go back to reference So T, Lee SW, Croft M. Tumor necrosis factor/tumor necrosis factor receptor family members that positively regulate immunity. Int J Hematol. 2006;83:1–11.PubMedCrossRef So T, Lee SW, Croft M. Tumor necrosis factor/tumor necrosis factor receptor family members that positively regulate immunity. Int J Hematol. 2006;83:1–11.PubMedCrossRef
29.
go back to reference Luger SM, Ratajczak J, Ratajczak MZ, Kuczynski WI, DiPaola RS, Ngo W, et al. A functional analysis of protooncogene Vav’s role in adult human hematopoiesis. Blood. 1996;87:1326–34.PubMed Luger SM, Ratajczak J, Ratajczak MZ, Kuczynski WI, DiPaola RS, Ngo W, et al. A functional analysis of protooncogene Vav’s role in adult human hematopoiesis. Blood. 1996;87:1326–34.PubMed
30.
go back to reference Kurokawa M. AML1/Runx1 as a versatile regulator of hematopoiesis: regulation of its function and a role in adult hematopoiesis. Int J Hematol. 2006;84:136–42.PubMedCrossRef Kurokawa M. AML1/Runx1 as a versatile regulator of hematopoiesis: regulation of its function and a role in adult hematopoiesis. Int J Hematol. 2006;84:136–42.PubMedCrossRef
31.
go back to reference Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K, et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood. 2000;96:3154–60.PubMed Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K, et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood. 2000;96:3154–60.PubMed
32.
go back to reference Harada H, Harada Y, Tanaka H, Kimura A, Inaba T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood. 2003;101:673–80.PubMedCrossRef Harada H, Harada Y, Tanaka H, Kimura A, Inaba T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood. 2003;101:673–80.PubMedCrossRef
33.
go back to reference Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–24.PubMedCrossRef Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–24.PubMedCrossRef
34.
go back to reference Demers C, Chaturvedi CP, Ranish JA, Juban G, Lai P, Morle F, et al. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol Cell. 2007;27:573–84.PubMedCrossRefPubMedCentral Demers C, Chaturvedi CP, Ranish JA, Juban G, Lai P, Morle F, et al. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol Cell. 2007;27:573–84.PubMedCrossRefPubMedCentral
35.
go back to reference Hussein K, Theophile K, Busche G, Schlegelberger B, Gohring G, Kreipe H, et al. Aberrant microRNA expression pattern in myelodysplastic bone marrow cells. Leuk Res. 2010;34:1169–74.PubMedCrossRef Hussein K, Theophile K, Busche G, Schlegelberger B, Gohring G, Kreipe H, et al. Aberrant microRNA expression pattern in myelodysplastic bone marrow cells. Leuk Res. 2010;34:1169–74.PubMedCrossRef
36.
go back to reference Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J. Distinctive microRNA expression profiles in CD34 + bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet. 2011;19:313–9.PubMedCrossRefPubMedCentral Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J. Distinctive microRNA expression profiles in CD34 + bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet. 2011;19:313–9.PubMedCrossRefPubMedCentral
37.
go back to reference Erdogan B, Facey C, Qualtieri J, Tedesco J, Rinker E, Isett RB, et al. Diagnostic microRNAs in myelodysplastic syndrome. Exp Hematol. 2011;39(915–26):e2.PubMed Erdogan B, Facey C, Qualtieri J, Tedesco J, Rinker E, Isett RB, et al. Diagnostic microRNAs in myelodysplastic syndrome. Exp Hematol. 2011;39(915–26):e2.PubMed
38.
go back to reference Sokol L, Caceres G, Volinia S, Alder H, Nuovo GJ, Liu CG, et al. Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol. 2011;153:24–32.PubMedCrossRef Sokol L, Caceres G, Volinia S, Alder H, Nuovo GJ, Liu CG, et al. Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol. 2011;153:24–32.PubMedCrossRef
39.
go back to reference Votavova H, Grmanova M, Dostalova Merkerova M, Belickova M, Vasikova A, Neuwirtova R, et al. Differential expression of microRNAs in CD34+ cells of 5q- syndrome. J Hematol Oncol. 2011;4:1. Votavova H, Grmanova M, Dostalova Merkerova M, Belickova M, Vasikova A, Neuwirtova R, et al. Differential expression of microRNAs in CD34+ cells of 5q- syndrome. J Hematol Oncol. 2011;4:1.
40.
go back to reference Pons A, Nomdedeu B, Navarro A, Gaya A, Gel B, Diaz T, et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 2009;50:1854–9.PubMedCrossRef Pons A, Nomdedeu B, Navarro A, Gaya A, Gel B, Diaz T, et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 2009;50:1854–9.PubMedCrossRef
Metadata
Title
Expressional changes of genes and miRNA in common megakaryocyte-erythroid progenitors from lower-risk myelodysplastic syndrome
Authors
Kazuhiro Maki
Ko Sasaki
Yasunobu Nagata
Fusako Nagasawa
Yuka Nakamura
Seishi Ogawa
Kinuko Mitani
Publication date
01-10-2014
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 4/2014
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-014-1639-2

Other articles of this Issue 4/2014

International Journal of Hematology 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine