Skip to main content
Top
Published in: BioDrugs 1/2004

01-01-2004 | Technology Review

Expression Systems for the Production of Recombinant Pharmaceuticals

Author: Dr Régis Sodoyer

Published in: BioDrugs | Issue 1/2004

Login to get access

Abstract

The new generation of biological products are largely the result of genetic engineering. The qualitative and quantitative demand for recombinant proteins is steadily increasing. Molecular biologists are constantly challenged by the need to improve and optimise the existing expression systems, and also develop novel approaches to face the demands of producing the complex proteins of tomorrow. This continuous evolution is paralleled by growing concerns about the safety of these novel pharmaceuticals, with health authorities setting high standards for certification. One of the strategies used by researchers in this field involves sourcing new genetic elements for incorporation into expression systems by systematically analysing the rich natural diversity of microorganisms and plant-based expression systems. There are, in addition, numerous tools for modifying microorganisms and for re-engineering existing biological pathways or processes to meet the needs of the pharmaceutical industry. The aim of this review is to present the conventional and alternative expression systems, focusing on prokaryotic expression systems and briefly exploring other complementary recombinant protein production systems and their unique features.
Footnotes
1
The use of tradenames is for product identification purposes only and does not imply endorsement.
 
Literature
1.
go back to reference Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986 May 5; 189(1): 113–30PubMedCrossRef Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986 May 5; 189(1): 113–30PubMedCrossRef
2.
go back to reference Matthey B, Engert A, Klimka A, et al. A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene 1999 Mar 18; 229(1-2): 145–53PubMedCrossRef Matthey B, Engert A, Klimka A, et al. A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene 1999 Mar 18; 229(1-2): 145–53PubMedCrossRef
3.
go back to reference Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 1985 Feb; 82(4): 1074–8PubMedCrossRef Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 1985 Feb; 82(4): 1074–8PubMedCrossRef
4.
go back to reference Newman JR, Fuqua C. Broad-host-range expression vectors that carry the Larabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 1999 Feb 18; 227(2): 197–203PubMedCrossRef Newman JR, Fuqua C. Broad-host-range expression vectors that carry the Larabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 1999 Feb 18; 227(2): 197–203PubMedCrossRef
5.
go back to reference Bass SH, Yansura DG. Application of the E. coli trp promoter. Mol Biotechnol 2000 Nov; 16(3): 253–60PubMedCrossRef Bass SH, Yansura DG. Application of the E. coli trp promoter. Mol Biotechnol 2000 Nov; 16(3): 253–60PubMedCrossRef
6.
go back to reference Chevalet L, Robert A, Gueneau F, et al. Recombinant protein production driven by the tryptophan promoter is tightly controlled in ICONE 200, a new genetically engineered E. coli mutant. Biotechnol Bioeng 2000 Aug 20; 69(4): 351–8PubMedCrossRef Chevalet L, Robert A, Gueneau F, et al. Recombinant protein production driven by the tryptophan promoter is tightly controlled in ICONE 200, a new genetically engineered E. coli mutant. Biotechnol Bioeng 2000 Aug 20; 69(4): 351–8PubMedCrossRef
7.
go back to reference Carbonell X, Corchero JL, Cubarsi R, et al. Control of Escherichia coli growth rate through cell density. Microbiol Res 2002; 157(4): 257–65PubMedCrossRef Carbonell X, Corchero JL, Cubarsi R, et al. Control of Escherichia coli growth rate through cell density. Microbiol Res 2002; 157(4): 257–65PubMedCrossRef
8.
go back to reference Oh TJ, Jung IL, Kim IG. The Escherichia coli SOS gene sbmC is regulated by HNS and RpoS during the SOS induction and stationary growth phase. Biochem Biophys Res Commun 2001 Nov 9; 288(4): 1052–8PubMedCrossRef Oh TJ, Jung IL, Kim IG. The Escherichia coli SOS gene sbmC is regulated by HNS and RpoS during the SOS induction and stationary growth phase. Biochem Biophys Res Commun 2001 Nov 9; 288(4): 1052–8PubMedCrossRef
9.
go back to reference Rowe DC, Summers DK. The quiescent-cell expression system for protein synthesis in Escherichia coli. Appl Environ Microbiol 1999 Jun; 65(6): 2710–5PubMed Rowe DC, Summers DK. The quiescent-cell expression system for protein synthesis in Escherichia coli. Appl Environ Microbiol 1999 Jun; 65(6): 2710–5PubMed
10.
go back to reference Sektas M, Hasan N, Szybalski W. Expression plasmid with a very tight two-step control: Int/att-mediated gene inversion with respect to the stationary promoter. Gene 2001 Apr 18; 267(2): 213–20PubMedCrossRef Sektas M, Hasan N, Szybalski W. Expression plasmid with a very tight two-step control: Int/att-mediated gene inversion with respect to the stationary promoter. Gene 2001 Apr 18; 267(2): 213–20PubMedCrossRef
11.
go back to reference Kleber-Janke T, Becker WM. Use of modified BL21 (DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr Purif 2000 Aug; 19(3): 419–24PubMedCrossRef Kleber-Janke T, Becker WM. Use of modified BL21 (DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr Purif 2000 Aug; 19(3): 419–24PubMedCrossRef
12.
go back to reference Lakey DL, Voladri RK, Edwards KM, et al. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons. Infect Immun 2000 Jan; 68(1): 233–8PubMedCrossRef Lakey DL, Voladri RK, Edwards KM, et al. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons. Infect Immun 2000 Jan; 68(1): 233–8PubMedCrossRef
13.
go back to reference Baca AM, Hol WG. Overcoming codon bias: a method for high-level over expression of Plasmodium and other AT-rich parasite genes in Escherichia coli. Int J Parasitol 2000 Feb; 30(2): 113–8PubMedCrossRef Baca AM, Hol WG. Overcoming codon bias: a method for high-level over expression of Plasmodium and other AT-rich parasite genes in Escherichia coli. Int J Parasitol 2000 Feb; 30(2): 113–8PubMedCrossRef
14.
go back to reference Lammertyn E, Van Mellaert L, Bijnens AP, et al. Codon adjustment to maximise heterologous gene expression in Streptomyces lividans can lead to decreased mRNA stability and protein yield. Mol Gen Genet 1996 Feb 5; 250(2): 223–9PubMed Lammertyn E, Van Mellaert L, Bijnens AP, et al. Codon adjustment to maximise heterologous gene expression in Streptomyces lividans can lead to decreased mRNA stability and protein yield. Mol Gen Genet 1996 Feb 5; 250(2): 223–9PubMed
16.
go back to reference Buckingham RH. Codon context and protein synthesis: enhancements of the genetic code. Biochimie 1994; 76(5): 351–4PubMedCrossRef Buckingham RH. Codon context and protein synthesis: enhancements of the genetic code. Biochimie 1994; 76(5): 351–4PubMedCrossRef
17.
go back to reference Karlin S, Mrazek J, Campbell AM. Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol 1998 Sep; 29(6): 1341–55PubMedCrossRef Karlin S, Mrazek J, Campbell AM. Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol 1998 Sep; 29(6): 1341–55PubMedCrossRef
18.
go back to reference Humphreys DP, Sehdev M, Chapman AP, et al. High-level periplasmic expression in Escherichia coli using a eukaryotic signal peptide: importance of codon usage at the 5′end of the coding sequence. Protein Expr Purif 2000 Nov; 20(2): 252–64PubMedCrossRef Humphreys DP, Sehdev M, Chapman AP, et al. High-level periplasmic expression in Escherichia coli using a eukaryotic signal peptide: importance of codon usage at the 5′end of the coding sequence. Protein Expr Purif 2000 Nov; 20(2): 252–64PubMedCrossRef
19.
go back to reference Moszer I, Rocha EP, Danchin A. Codon usage and lateral gene transfer in Bacillus subtilis. Curr Opin Microbiol 1999 Oct; 2(5): 524–8PubMedCrossRef Moszer I, Rocha EP, Danchin A. Codon usage and lateral gene transfer in Bacillus subtilis. Curr Opin Microbiol 1999 Oct; 2(5): 524–8PubMedCrossRef
20.
go back to reference Karlin S, Barnett MJ, Campbell AM, et al. Predicting gene expression levels from codon biases in alpha-proteobacterial genomes. Proc Natl Acad Sci U S A 2003 Jun 10; 100(12): 7313–8PubMedCrossRef Karlin S, Barnett MJ, Campbell AM, et al. Predicting gene expression levels from codon biases in alpha-proteobacterial genomes. Proc Natl Acad Sci U S A 2003 Jun 10; 100(12): 7313–8PubMedCrossRef
21.
go back to reference de Smit MH, van Duin J. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 2003 Aug 22; 331(4): 737–43PubMedCrossRef de Smit MH, van Duin J. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 2003 Aug 22; 331(4): 737–43PubMedCrossRef
22.
go back to reference Schwarz E, Lilie H, Rudolph R. The effect of molecular chaperones on in vivo and in vitro folding processes. Biol Chem 1996 Jul-Aug; 377(7-8): 411–6PubMed Schwarz E, Lilie H, Rudolph R. The effect of molecular chaperones on in vivo and in vitro folding processes. Biol Chem 1996 Jul-Aug; 377(7-8): 411–6PubMed
23.
go back to reference Thomas JG, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli: to fold or to refold. Appl Biochem Biotechnol 1997 Jun; 66(3): 197–238PubMedCrossRef Thomas JG, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli: to fold or to refold. Appl Biochem Biotechnol 1997 Jun; 66(3): 197–238PubMedCrossRef
24.
go back to reference Stevens JM, Rao Saroja N, Jaouen M, et al. Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosteroni. Protein Expr Purif 2003 May; 29(1): 70–6PubMedCrossRef Stevens JM, Rao Saroja N, Jaouen M, et al. Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosteroni. Protein Expr Purif 2003 May; 29(1): 70–6PubMedCrossRef
25.
go back to reference Laage R, Langosch D. Strategies for prokaryotic expression of eukaryotic membrane proteins. Traffic 2001 Feb; 2(2): 99–104PubMedCrossRef Laage R, Langosch D. Strategies for prokaryotic expression of eukaryotic membrane proteins. Traffic 2001 Feb; 2(2): 99–104PubMedCrossRef
26.
go back to reference Chen BP, Hai T. Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli as host. Gene 1994 Feb 11; 139(1): 73–5PubMedCrossRef Chen BP, Hai T. Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli as host. Gene 1994 Feb 11; 139(1): 73–5PubMedCrossRef
27.
go back to reference Einhauer A, Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 2001 Oct 30; 49(1-3): 455–65PubMedCrossRef Einhauer A, Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 2001 Oct 30; 49(1-3): 455–65PubMedCrossRef
28.
go back to reference Humphreys DP, King LM, West SM, et al. Improved efficiency of site-specific copper (II) ion-catalysed protein cleavage effected by mutagenesis of cleavage site. Protein Eng 2000 Mar; 13(3): 201–6PubMedCrossRef Humphreys DP, King LM, West SM, et al. Improved efficiency of site-specific copper (II) ion-catalysed protein cleavage effected by mutagenesis of cleavage site. Protein Eng 2000 Mar; 13(3): 201–6PubMedCrossRef
29.
go back to reference Wang T, Evdokimov E, Yiadom K, et al. Biotin-ubiquitin tagging of mammalian proteins in Escherichia coli. Protein Expr Purif2003 Jul; 30(1): 140–9PubMedCrossRef Wang T, Evdokimov E, Yiadom K, et al. Biotin-ubiquitin tagging of mammalian proteins in Escherichia coli. Protein Expr Purif2003 Jul; 30(1): 140–9PubMedCrossRef
30.
go back to reference Chong S, Mersha FB, Comb DG, et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 1997 Jun 19; 192(2): 271–81PubMedCrossRef Chong S, Mersha FB, Comb DG, et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 1997 Jun 19; 192(2): 271–81PubMedCrossRef
31.
go back to reference Kirkpatrick RB, McDevitt PJ, Matico RE, et al. A bicistronic expression system for bacterial production of authentic human interleukin-18. Protein Expr Purif 2003 Feb; 27(2): 279–92PubMedCrossRef Kirkpatrick RB, McDevitt PJ, Matico RE, et al. A bicistronic expression system for bacterial production of authentic human interleukin-18. Protein Expr Purif 2003 Feb; 27(2): 279–92PubMedCrossRef
32.
go back to reference Tarragona-Fiol A, Taylorson CJ, Ward JM, et al. Production of mature bovine pancreatic ribonuclease in Escherichia coli. Gene 1992 Sep 10; 118(2): 239–45PubMedCrossRef Tarragona-Fiol A, Taylorson CJ, Ward JM, et al. Production of mature bovine pancreatic ribonuclease in Escherichia coli. Gene 1992 Sep 10; 118(2): 239–45PubMedCrossRef
33.
go back to reference Ishida M, Oshima T, Yutani K. Overexpression in Escherichia coli of the AT-rich trpA and trpB genes from the hyperthermophilic archaeon Pyrococcus furiosus. FEMS Microbiol Lett 2002 Nov 5; 216(2): 179–83PubMedCrossRef Ishida M, Oshima T, Yutani K. Overexpression in Escherichia coli of the AT-rich trpA and trpB genes from the hyperthermophilic archaeon Pyrococcus furiosus. FEMS Microbiol Lett 2002 Nov 5; 216(2): 179–83PubMedCrossRef
34.
go back to reference Chatwin HM, Summers DK. Monomer-dimer control of the ColE1 P(cer) promoter. Microbiology 2001 Nov; 147 (Pt 11): 3071–81PubMed Chatwin HM, Summers DK. Monomer-dimer control of the ColE1 P(cer) promoter. Microbiology 2001 Nov; 147 (Pt 11): 3071–81PubMed
35.
go back to reference Wilms B, Hauck A, Reuss M, et al. High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 2001 Apr 20; 73(2): 95–103PubMedCrossRef Wilms B, Hauck A, Reuss M, et al. High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 2001 Apr 20; 73(2): 95–103PubMedCrossRef
36.
go back to reference Gerdes K, Bech FW, Jorgensen ST, et al. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J 1986 Aug; 5(8): 2023–9PubMed Gerdes K, Bech FW, Jorgensen ST, et al. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J 1986 Aug; 5(8): 2023–9PubMed
37.
go back to reference Chambers SP, Prior SE, Barstow DA, et al. The pMTL niccloning vectors: I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 1988 Aug 15; 68(1): 139–49PubMedCrossRef Chambers SP, Prior SE, Barstow DA, et al. The pMTL niccloning vectors: I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 1988 Aug 15; 68(1): 139–49PubMedCrossRef
38.
go back to reference Degryse E. Stability of a host-vector system based on complementation of an essential gene in Escherichia coli. J Biotechnol 1991 Apr; 18(1-2): 29–39PubMedCrossRef Degryse E. Stability of a host-vector system based on complementation of an essential gene in Escherichia coli. J Biotechnol 1991 Apr; 18(1-2): 29–39PubMedCrossRef
39.
go back to reference Cranenburgh RM, Hanak JA, Williams SG, et al. Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration [letter]. Nucleic Acids Res 2001 Mar 1; 29(5): E26PubMedCrossRef Cranenburgh RM, Hanak JA, Williams SG, et al. Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration [letter]. Nucleic Acids Res 2001 Mar 1; 29(5): E26PubMedCrossRef
40.
go back to reference Soubrier F,Cameron B, Manse B, et al. pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther 1999 Aug; 6(8): 1482–8PubMedCrossRef Soubrier F,Cameron B, Manse B, et al. pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther 1999 Aug; 6(8): 1482–8PubMedCrossRef
41.
go back to reference Link AJ, Phillips D, Church GM. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 1997 Oct; 179(20): 6228–37PubMed Link AJ, Phillips D, Church GM. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 1997 Oct; 179(20): 6228–37PubMed
42.
go back to reference Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000 Jun 6; 97(12): 6640–5PubMedCrossRef Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000 Jun 6; 97(12): 6640–5PubMedCrossRef
43.
go back to reference Tokuyasu K, Kaneko S, Hayashi K, et al. Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells. FEBS Lett 1999 Sep 10; 458(1): 23–6PubMedCrossRef Tokuyasu K, Kaneko S, Hayashi K, et al. Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells. FEBS Lett 1999 Sep 10; 458(1): 23–6PubMedCrossRef
44.
go back to reference Forsberg G, Forsgren M, Jaki M, et al. Identification of framework residues in a secreted recombinant antibody fragment that control production level and localization in Escherichia coli. J Biol Chem 1997 May 9; 272(19): 12430–6PubMedCrossRef Forsberg G, Forsgren M, Jaki M, et al. Identification of framework residues in a secreted recombinant antibody fragment that control production level and localization in Escherichia coli. J Biol Chem 1997 May 9; 272(19): 12430–6PubMedCrossRef
45.
go back to reference Sauvonnet N, Pugsley AP. Identification of two regions of Klebsiella oxytoca pullulanase that together are capable of promoting beta-lactamase secretion by the general secretory pathway. Mol Microbiol 1996 Oct; 22(1): 1–7PubMedCrossRef Sauvonnet N, Pugsley AP. Identification of two regions of Klebsiella oxytoca pullulanase that together are capable of promoting beta-lactamase secretion by the general secretory pathway. Mol Microbiol 1996 Oct; 22(1): 1–7PubMedCrossRef
46.
go back to reference Loo T, Patchett ML, Norris GE, et al. Using secretion to solve a solubility problem: high-yield expression in Escherichia coli and purification of the bacterial glycoamidase PNGase F. Protein Expr Purif 2002 Feb; 24(1): 90–8PubMedCrossRef Loo T, Patchett ML, Norris GE, et al. Using secretion to solve a solubility problem: high-yield expression in Escherichia coli and purification of the bacterial glycoamidase PNGase F. Protein Expr Purif 2002 Feb; 24(1): 90–8PubMedCrossRef
47.
go back to reference Pines O, Inouye M. Expression and secretion of proteins in E. coli. Mol Biotechnol 1999 Aug; 12(1): 25–34PubMedCrossRef Pines O, Inouye M. Expression and secretion of proteins in E. coli. Mol Biotechnol 1999 Aug; 12(1): 25–34PubMedCrossRef
48.
go back to reference Lei SP, Lin HC, Wang SS, et al. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol 1987 Sep; 169(9): 4379–83PubMed Lei SP, Lin HC, Wang SS, et al. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol 1987 Sep; 169(9): 4379–83PubMed
49.
go back to reference Simmons LC, Yansura DG. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat Biotechnol 1996 May; 14(5): 629–34PubMedCrossRef Simmons LC, Yansura DG. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat Biotechnol 1996 May; 14(5): 629–34PubMedCrossRef
50.
go back to reference Simmons LC, Reilly D, Klimowski L, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 2002 May 1; 263(1-2): 133–47PubMedCrossRef Simmons LC, Reilly D, Klimowski L, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 2002 May 1; 263(1-2): 133–47PubMedCrossRef
51.
go back to reference Yu P, San KY. Protein release in recombinant Escherichia coli using bacteriocin release protein. Biotechnol Prog 1992 Jan-Feb; 8(1): 25–9PubMedCrossRef Yu P, San KY. Protein release in recombinant Escherichia coli using bacteriocin release protein. Biotechnol Prog 1992 Jan-Feb; 8(1): 25–9PubMedCrossRef
52.
go back to reference Fu Z, Hamid SB, Razak CN, et al. Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease. Protein Expr Purif 2003 Mar; 28(1): 63–8PubMedCrossRef Fu Z, Hamid SB, Razak CN, et al. Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease. Protein Expr Purif 2003 Mar; 28(1): 63–8PubMedCrossRef
53.
go back to reference Robbens J, Raeymaekers A, Steidler L, et al. Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release, and purification. Protein Expr Purif 1995 Aug; 6(4): 481–6PubMedCrossRef Robbens J, Raeymaekers A, Steidler L, et al. Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release, and purification. Protein Expr Purif 1995 Aug; 6(4): 481–6PubMedCrossRef
54.
go back to reference Wacker M, Linton D, Hitchen PG, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 2002 Nov 29; 298(5599): 1790–3 Wacker M, Linton D, Hitchen PG, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 2002 Nov 29; 298(5599): 1790–3
55.
go back to reference Ravn P, Arnau J, Madsen SM, et al. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 2003 Aug; 149 (Pt 8): 2193–201PubMedCrossRef Ravn P, Arnau J, Madsen SM, et al. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 2003 Aug; 149 (Pt 8): 2193–201PubMedCrossRef
56.
go back to reference Bredmose L, Madsen SM, Vrang A. Commercial production of heterologous proteins in Lactococcus lactis [poster]. 2nd International Conference on Recombinant Protein Production with Prokaryotic and Eukaryotic Cells; 2002 Nov 14-16; Cernobio Bredmose L, Madsen SM, Vrang A. Commercial production of heterologous proteins in Lactococcus lactis [poster]. 2nd International Conference on Recombinant Protein Production with Prokaryotic and Eukaryotic Cells; 2002 Nov 14-16; Cernobio
57.
go back to reference Mercenier A, Muller-Alouf H, Grangette C. Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2000 Jan; 2(1): 17–25PubMed Mercenier A, Muller-Alouf H, Grangette C. Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2000 Jan; 2(1): 17–25PubMed
58.
go back to reference Kruger C, Hu Y, Pan Q, et al. In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 2002 Jul; 20(7): 702–6PubMedCrossRef Kruger C, Hu Y, Pan Q, et al. In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 2002 Jul; 20(7): 702–6PubMedCrossRef
59.
go back to reference Steidler L, Neirynck S, Huyghebaert N, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 2003 Jul; 21(7): 75–9CrossRef Steidler L, Neirynck S, Huyghebaert N, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 2003 Jul; 21(7): 75–9CrossRef
60.
go back to reference Beninati C, Oggioni MR, Boccanera M, et al. Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 2000 Oct; 18(10): 1060–4PubMedCrossRef Beninati C, Oggioni MR, Boccanera M, et al. Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 2000 Oct; 18(10): 1060–4PubMedCrossRef
61.
go back to reference Pogliano JA, Beckwith J. SecD and SecF facilitate protein export in Escherichia coli. EMBO J 1994 Feb 1; 13(3): 554–61PubMed Pogliano JA, Beckwith J. SecD and SecF facilitate protein export in Escherichia coli. EMBO J 1994 Feb 1; 13(3): 554–61PubMed
62.
go back to reference DeLisa MP, Samuelson P, Palmer T, et al. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem 2002 Aug 16; 277(33): 29825–31PubMedCrossRef DeLisa MP, Samuelson P, Palmer T, et al. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem 2002 Aug 16; 277(33): 29825–31PubMedCrossRef
63.
go back to reference Bingle WH, Smit J. High-level expression vectors for Caulobacter crescentus incorporating the transcription/translation initiation regions of the paracrystalline surface-layer-protein gene. Plasmid 1990 Sep; 24(2): 143–8PubMedCrossRef Bingle WH, Smit J. High-level expression vectors for Caulobacter crescentus incorporating the transcription/translation initiation regions of the paracrystalline surface-layer-protein gene. Plasmid 1990 Sep; 24(2): 143–8PubMedCrossRef
64.
go back to reference Simon B, Nomellini J, Chiou P, et al. Recombinant vaccines against infectious hematopoietic necrosis virus: production by the Caulobacter crescentus S-layer protein secretion system and evaluation in laboratory trials. Dis Aquat Organ 2001 Jan 26; 44(1): 17–27PubMedCrossRef Simon B, Nomellini J, Chiou P, et al. Recombinant vaccines against infectious hematopoietic necrosis virus: production by the Caulobacter crescentus S-layer protein secretion system and evaluation in laboratory trials. Dis Aquat Organ 2001 Jan 26; 44(1): 17–27PubMedCrossRef
65.
go back to reference Umelo-Njaka E, Nomellini JF, Bingle WH, et al. Expression and testing of Pseudomonas aeruginosa vaccine candidate proteins prepared with the Caulobacter crescentus S-layer protein expression system. Vaccine 2001 Jan 8; 19(11-12): 1406–15PubMedCrossRef Umelo-Njaka E, Nomellini JF, Bingle WH, et al. Expression and testing of Pseudomonas aeruginosa vaccine candidate proteins prepared with the Caulobacter crescentus S-layer protein expression system. Vaccine 2001 Jan 8; 19(11-12): 1406–15PubMedCrossRef
66.
go back to reference Tremblay D, Lemay J, Gilbert M, et al. High-level heterologous expression and secretion in Streptomyces lividans of two major antigenic proteins from Mycobacterium tuberculosis. Can J Microbiol 2002 Jan; 48(1): 43–8PubMedCrossRef Tremblay D, Lemay J, Gilbert M, et al. High-level heterologous expression and secretion in Streptomyces lividans of two major antigenic proteins from Mycobacterium tuberculosis. Can J Microbiol 2002 Jan; 48(1): 43–8PubMedCrossRef
67.
go back to reference Pozidis C, Lammertyn E, Politou AS, et al. Protein secretion biotechnology using Streptomyces lividans: large-scale production of functional trimeric tumor necrosis factor alpha. Biotechnol Bioeng 2001 Mar 20; 72(6): 611–9PubMedCrossRef Pozidis C, Lammertyn E, Politou AS, et al. Protein secretion biotechnology using Streptomyces lividans: large-scale production of functional trimeric tumor necrosis factor alpha. Biotechnol Bioeng 2001 Mar 20; 72(6): 611–9PubMedCrossRef
68.
go back to reference Tutino ML, Duilio A, Parrilli R, et al. A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 2001 Aug; 5(4): 257–64PubMedCrossRef Tutino ML, Duilio A, Parrilli R, et al. A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 2001 Aug; 5(4): 257–64PubMedCrossRef
69.
go back to reference Gellissen G, Hollenberg CP. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis: a review. Gene 1997 Apr 29; 190(1): 87–97PubMedCrossRef Gellissen G, Hollenberg CP. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis: a review. Gene 1997 Apr 29; 190(1): 87–97PubMedCrossRef
70.
go back to reference Schaffrath R, Breunig KD. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 2000 Aug; 30(3): 173–90PubMedCrossRef Schaffrath R, Breunig KD. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 2000 Aug; 30(3): 173–90PubMedCrossRef
71.
go back to reference Cereghino GP, Cereghino JL, Ilgen C, et al. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 2002 Aug; 13(4): 329–32PubMedCrossRef Cereghino GP, Cereghino JL, Ilgen C, et al. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 2002 Aug; 13(4): 329–32PubMedCrossRef
72.
go back to reference Gellissen G, Melber K. Methylotrophic yeast Hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittel Forschung 1996 Sep; 46(9): 943–8PubMed Gellissen G, Melber K. Methylotrophic yeast Hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittel Forschung 1996 Sep; 46(9): 943–8PubMed
73.
go back to reference Branduardi P. Molecular cloning and sequence analysis of the Zygosaccharomyces bailii HIS3 gene encoding the imidazole glycerolphosphate dehydratase. Yeast 2002 Sep 30; 19(13): 1165–70PubMedCrossRef Branduardi P. Molecular cloning and sequence analysis of the Zygosaccharomyces bailii HIS3 gene encoding the imidazole glycerolphosphate dehydratase. Yeast 2002 Sep 30; 19(13): 1165–70PubMedCrossRef
74.
go back to reference Madzak C, Treton B, Blanchin-Roland S. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2000 Apr; 2(2): 207–16PubMed Madzak C, Treton B, Blanchin-Roland S. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2000 Apr; 2(2): 207–16PubMed
75.
go back to reference Nicaud JM, Madzak C, van den Broek P, et al. Protein expression and secretion in the yeast Yarrowia lipolytica. FEM Yeast Res 2002 Aug; 2(3): 371–9 Nicaud JM, Madzak C, van den Broek P, et al. Protein expression and secretion in the yeast Yarrowia lipolytica. FEM Yeast Res 2002 Aug; 2(3): 371–9
76.
go back to reference Garnick RL. Safety aspects in the quality control of recombinant products from mammalian cell culture. J Pharm Biomed Anal 1989; 7(2): 255–66PubMedCrossRef Garnick RL. Safety aspects in the quality control of recombinant products from mammalian cell culture. J Pharm Biomed Anal 1989; 7(2): 255–66PubMedCrossRef
77.
go back to reference Hesse F, Wagner R. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol 2000 Apr; 18(4): 173–80PubMedCrossRef Hesse F, Wagner R. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol 2000 Apr; 18(4): 173–80PubMedCrossRef
78.
go back to reference Ikonomou L, Drugmand JC, Bastin G, et al. Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production. Biotechnol Prog 2002 Dec 6; 18(6): 1345–55PubMedCrossRef Ikonomou L, Drugmand JC, Bastin G, et al. Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production. Biotechnol Prog 2002 Dec 6; 18(6): 1345–55PubMedCrossRef
79.
go back to reference Marchai I, Jarvis DL, Cacan R, et al. Glycoproteins from insect cells: sialylated or not? Biol Chem 2001 Feb; 382(2): 151–9 Marchai I, Jarvis DL, Cacan R, et al. Glycoproteins from insect cells: sialylated or not? Biol Chem 2001 Feb; 382(2): 151–9
80.
go back to reference Ma JK, Hikmat BY, Wycoff K, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 1998 May; 4(5): 601–6PubMedCrossRef Ma JK, Hikmat BY, Wycoff K, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 1998 May; 4(5): 601–6PubMedCrossRef
81.
go back to reference Zeitlin L, Olmsted SS, Moench TR, et al. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 1998 Dec; 16(13): 1361–4PubMedCrossRef Zeitlin L, Olmsted SS, Moench TR, et al. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 1998 Dec; 16(13): 1361–4PubMedCrossRef
82.
go back to reference Borisjuk NV, Borisjuk LG, Logendra S, et al. Production of recombinant proteins in plant root exudates. Nat Biotechnol 1999 May; 17(5): 466–9PubMedCrossRef Borisjuk NV, Borisjuk LG, Logendra S, et al. Production of recombinant proteins in plant root exudates. Nat Biotechnol 1999 May; 17(5): 466–9PubMedCrossRef
83.
go back to reference Gaume A, Komarnytsky S, Borisjuk N, et al. Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 2003 Aug; 21(12): 1188–93PubMedCrossRef Gaume A, Komarnytsky S, Borisjuk N, et al. Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 2003 Aug; 21(12): 1188–93PubMedCrossRef
84.
go back to reference Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 2003 Jan 21; 100(2): 438–42PubMedCrossRef Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 2003 Jan 21; 100(2): 438–42PubMedCrossRef
85.
go back to reference Clark AJ. Gene expression in the mammary glands of transgenic animals. Biochem Soc Symp 1998; 63: 133–40PubMed Clark AJ. Gene expression in the mammary glands of transgenic animals. Biochem Soc Symp 1998; 63: 133–40PubMed
86.
go back to reference Niemann H, Halter R, Carnwath JW, et al. Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res 1999 Jun; 8(3): 237–47PubMedCrossRef Niemann H, Halter R, Carnwath JW, et al. Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res 1999 Jun; 8(3): 237–47PubMedCrossRef
87.
go back to reference Hiripi L, Makovics F, Halter R, et al. Expression of active human blood clotting factor VIII in mammary gland of transgenic rabbits. DNA Cell Biol 2003 Jan; 22(1): 41–5PubMedCrossRef Hiripi L, Makovics F, Halter R, et al. Expression of active human blood clotting factor VIII in mammary gland of transgenic rabbits. DNA Cell Biol 2003 Jan; 22(1): 41–5PubMedCrossRef
88.
go back to reference Lui VC, Tam PK, Leung MY, et al. Mammary gland-specific secretion of biologically active immunosuppressive agent cytotoxic-T-lymphocyte antigen 4 human immunoglobulin fusion protein (CTLA4Ig) in milk by transgenesis. J Immunol Methods 2003 Jun 1; 277(1-2): 171–83PubMedCrossRef Lui VC, Tam PK, Leung MY, et al. Mammary gland-specific secretion of biologically active immunosuppressive agent cytotoxic-T-lymphocyte antigen 4 human immunoglobulin fusion protein (CTLA4Ig) in milk by transgenesis. J Immunol Methods 2003 Jun 1; 277(1-2): 171–83PubMedCrossRef
89.
go back to reference Keefer CL, Keyston R, Lazaris A, et al. Production of cloned goats after nuclear transfer using adult somatic cells. Biol Reprod 2002 Jan; 66(1): 199–203PubMedCrossRef Keefer CL, Keyston R, Lazaris A, et al. Production of cloned goats after nuclear transfer using adult somatic cells. Biol Reprod 2002 Jan; 66(1): 199–203PubMedCrossRef
90.
go back to reference Ryabova LA, Morozov IYu, Spirin AS. Continuous-flow cell-free translation, transcription-translation, and replication-translation systems. Methods Mol Biol 1998; 77: 179–93PubMed Ryabova LA, Morozov IYu, Spirin AS. Continuous-flow cell-free translation, transcription-translation, and replication-translation systems. Methods Mol Biol 1998; 77: 179–93PubMed
91.
go back to reference Martin GA, Kawaguchi R, Lam Y, et al. High-yield, in vitro protein expression using a continuous-exchange, coupled transcription/translation system. Biotechniques 2001 Oct; 31(4): 948–50, 952-3PubMed Martin GA, Kawaguchi R, Lam Y, et al. High-yield, in vitro protein expression using a continuous-exchange, coupled transcription/translation system. Biotechniques 2001 Oct; 31(4): 948–50, 952-3PubMed
92.
go back to reference Fernholz E, Zaiss K, Besir H, et al. The expression of disulfide bonded proteins in cell-free protein expression. Spirin AS, editor. Cell-free translation systems. Berlin: Springer, 2002: 175–9CrossRef Fernholz E, Zaiss K, Besir H, et al. The expression of disulfide bonded proteins in cell-free protein expression. Spirin AS, editor. Cell-free translation systems. Berlin: Springer, 2002: 175–9CrossRef
93.
go back to reference Kigawa T, Muto Y, Yokoyama S. Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 1995 Sep; 6(2): 129–34PubMedCrossRef Kigawa T, Muto Y, Yokoyama S. Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 1995 Sep; 6(2): 129–34PubMedCrossRef
94.
go back to reference Shimizu Y, Inoue A, Tomari Y, et al. Cell-free translation reconstituted with purified components. Nat Biotechnol 2001 Aug; 19(8): 751–5PubMedCrossRef Shimizu Y, Inoue A, Tomari Y, et al. Cell-free translation reconstituted with purified components. Nat Biotechnol 2001 Aug; 19(8): 751–5PubMedCrossRef
95.
go back to reference Uzawa T, Yamagishi A, Oshima T. Continuous cell-free protein synthesis directed by messenger DNA and catalyzed by extract of Thermus thermophilus HB27. Biosci Biotechnol Biochem 2003 Mar; 67(3): 639–42PubMedCrossRef Uzawa T, Yamagishi A, Oshima T. Continuous cell-free protein synthesis directed by messenger DNA and catalyzed by extract of Thermus thermophilus HB27. Biosci Biotechnol Biochem 2003 Mar; 67(3): 639–42PubMedCrossRef
96.
go back to reference Kigawa T, Yokoyama S. High-throughput cell-free protein expression system for structural genomics and proteomics studies. Tanpakushitsu Kakusan Koso 2002 Jun; 47(8 Suppl.): 1014–9PubMed Kigawa T, Yokoyama S. High-throughput cell-free protein expression system for structural genomics and proteomics studies. Tanpakushitsu Kakusan Koso 2002 Jun; 47(8 Suppl.): 1014–9PubMed
97.
go back to reference Sawasaki T, Ogasawara T, Morishita R, et al. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 2002 Nov 12; 99(23): 14652–7PubMedCrossRef Sawasaki T, Ogasawara T, Morishita R, et al. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 2002 Nov 12; 99(23): 14652–7PubMedCrossRef
98.
go back to reference Breitling R, Klingner S, Callewaert N, et al. Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr Purif 2002 Jul; 25(2): 209–18PubMedCrossRef Breitling R, Klingner S, Callewaert N, et al. Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr Purif 2002 Jul; 25(2): 209–18PubMedCrossRef
Metadata
Title
Expression Systems for the Production of Recombinant Pharmaceuticals
Author
Dr Régis Sodoyer
Publication date
01-01-2004
Publisher
Springer International Publishing
Published in
BioDrugs / Issue 1/2004
Print ISSN: 1173-8804
Electronic ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200418010-00005

Other articles of this Issue 1/2004

BioDrugs 1/2004 Go to the issue