Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Expression profile of CREB knockdown in myeloid leukemia cells

Authors: Matteo Pellegrini, Jerry C Cheng, Jon Voutila, Dejah Judelson, Julie Taylor, Stanley F Nelson, Kathleen M Sakamoto

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution.

Methods

To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA.

Results

By combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA.

Conclusion

We have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle.
Appendix
Available only for authorised users
Literature
1.
go back to reference Woods WG: Curing childhood acute myeloid leukemia (AML) at the half-way point: promises to keep and miles to go before we sleep. Pediatr Blood Cancer. 2006, 46 (5): 565-569.CrossRefPubMed Woods WG: Curing childhood acute myeloid leukemia (AML) at the half-way point: promises to keep and miles to go before we sleep. Pediatr Blood Cancer. 2006, 46 (5): 565-569.CrossRefPubMed
2.
go back to reference Crans-Vargas H, Landaw E, Bhatia S, Sandusky G, Sakamoto K: CREB Expression in acute leukemias. Blood. 2002, 99: 2617-2619.CrossRefPubMed Crans-Vargas H, Landaw E, Bhatia S, Sandusky G, Sakamoto K: CREB Expression in acute leukemias. Blood. 2002, 99: 2617-2619.CrossRefPubMed
3.
go back to reference Crans-Vargas HN, Landaw EM, Bhatia S, Sandusky G, Moore TB, Sakamoto KM: Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. Blood. 2002, 99 (7): 2617-2619.CrossRefPubMed Crans-Vargas HN, Landaw EM, Bhatia S, Sandusky G, Moore TB, Sakamoto KM: Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. Blood. 2002, 99 (7): 2617-2619.CrossRefPubMed
4.
go back to reference Haywitz A, Greenberg M: CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual Review of Biochemistry. 1999, 68: 821-861.CrossRef Haywitz A, Greenberg M: CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual Review of Biochemistry. 1999, 68: 821-861.CrossRef
5.
go back to reference Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001, 2 (8): 599-609.CrossRefPubMed Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001, 2 (8): 599-609.CrossRefPubMed
6.
go back to reference Shankar DB, Cheng JC, Sakamoto KM: Role of cyclic AMP response element binding protein in human leukemias. Cancer. 2005, 104 (9): 1819-1824.CrossRefPubMed Shankar DB, Cheng JC, Sakamoto KM: Role of cyclic AMP response element binding protein in human leukemias. Cancer. 2005, 104 (9): 1819-1824.CrossRefPubMed
7.
go back to reference Bito H, Deisseroth K, Tsien RW: CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 1996, 87 (7): 1203-1214.CrossRefPubMed Bito H, Deisseroth K, Tsien RW: CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 1996, 87 (7): 1203-1214.CrossRefPubMed
8.
go back to reference Deisseroth K, Bito H, Tsien RW: Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron. 1996, 16 (1): 89-101.CrossRefPubMed Deisseroth K, Bito H, Tsien RW: Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron. 1996, 16 (1): 89-101.CrossRefPubMed
9.
go back to reference Kwon EM, Raines MA, Blenis J, Sakamoto KM: Granulocyte-macrophage colony-stimulating factor stimulation results in phosphorylation of cAMP response element-binding protein through activation of pp90RSK. Blood. 2000, 95 (8): 2552-2558.PubMed Kwon EM, Raines MA, Blenis J, Sakamoto KM: Granulocyte-macrophage colony-stimulating factor stimulation results in phosphorylation of cAMP response element-binding protein through activation of pp90RSK. Blood. 2000, 95 (8): 2552-2558.PubMed
10.
go back to reference Sakamoto KM, Fraser JK, Lee HJ, Lehman E, Gasson JC: Granulocyte-macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter. Mol Cell Biol. 1994, 14 (9): 5975-5985.CrossRefPubMedPubMedCentral Sakamoto KM, Fraser JK, Lee HJ, Lehman E, Gasson JC: Granulocyte-macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter. Mol Cell Biol. 1994, 14 (9): 5975-5985.CrossRefPubMedPubMedCentral
11.
go back to reference Wong A, Sakamoto KM: Granulocyte-macrophage colony-stimulating factor induces the transcriptional activation of egr-1 through a protein kinase A-independent signaling pathway. J Biol Chem. 1995, 270 (51): 30271-30273.CrossRefPubMed Wong A, Sakamoto KM: Granulocyte-macrophage colony-stimulating factor induces the transcriptional activation of egr-1 through a protein kinase A-independent signaling pathway. J Biol Chem. 1995, 270 (51): 30271-30273.CrossRefPubMed
12.
go back to reference Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, Rao NP, Landaw EM, Sakamoto KM: The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell. 2005, 7 (4): 351-362.CrossRefPubMed Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, Rao NP, Landaw EM, Sakamoto KM: The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell. 2005, 7 (4): 351-362.CrossRefPubMed
13.
go back to reference Scheid MP, Duronio V: Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci USA. 1998, 95 (13): 7439-7444.CrossRefPubMedPubMedCentral Scheid MP, Duronio V: Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci USA. 1998, 95 (13): 7439-7444.CrossRefPubMedPubMedCentral
14.
go back to reference Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, et al: Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA. 2005, 102 (12): 4459-4464.CrossRefPubMedPubMedCentral Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, et al: Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA. 2005, 102 (12): 4459-4464.CrossRefPubMedPubMedCentral
15.
go back to reference Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004, 119 (7): 1041-1054.PubMed Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004, 119 (7): 1041-1054.PubMed
16.
go back to reference Cheng JC, Kinjo K, Judelson D, Chang J, Wu WS, Schmid I, Shankar DB, Kasahara N, Stripecke R, Bhatia R, et al: CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood. 2007 Cheng JC, Kinjo K, Judelson D, Chang J, Wu WS, Schmid I, Shankar DB, Kasahara N, Stripecke R, Bhatia R, et al: CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood. 2007
17.
18.
go back to reference Kim DH, Rossi JJ: Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007, 8 (3): 173-184.CrossRefPubMed Kim DH, Rossi JJ: Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007, 8 (3): 173-184.CrossRefPubMed
19.
go back to reference Cheng JC, Sakamoto KM: The emerging role of RNA interference in the design of novel therapeutics in oncology. Cell Cycle. 2004, 3 (11): 1398-1401.CrossRefPubMed Cheng JC, Sakamoto KM: The emerging role of RNA interference in the design of novel therapeutics in oncology. Cell Cycle. 2004, 3 (11): 1398-1401.CrossRefPubMed
20.
go back to reference Ventura A, Meissner A, Dillon C, McManus M, Sharp P, Parjs L, Jaenisch R, Jacks T: Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA. 2004, 101 (28): 10380-10385.CrossRefPubMedPubMedCentral Ventura A, Meissner A, Dillon C, McManus M, Sharp P, Parjs L, Jaenisch R, Jacks T: Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA. 2004, 101 (28): 10380-10385.CrossRefPubMedPubMedCentral
21.
go back to reference Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM: Development of a self-inactivating lentivirus vector. J Virol. 1998, 72 (10): 8150-8157.PubMedPubMedCentral Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM: Development of a self-inactivating lentivirus vector. J Virol. 1998, 72 (10): 8150-8157.PubMedPubMedCentral
22.
go back to reference Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004, 101 (16): 6062-6067.CrossRefPubMedPubMedCentral Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004, 101 (16): 6062-6067.CrossRefPubMedPubMedCentral
23.
go back to reference Fu WJ, Hu J, Spencer T, Carroll R, Wu G: Statistical models in assessing fold change of gene expression in real-time RT-PCR experiments. Comput Biol Chem. 2006, 30 (1): 21-26.CrossRefPubMed Fu WJ, Hu J, Spencer T, Carroll R, Wu G: Statistical models in assessing fold change of gene expression in real-time RT-PCR experiments. Comput Biol Chem. 2006, 30 (1): 21-26.CrossRefPubMed
25.
go back to reference Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU: Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol. 2006, 8 (7): 688-699.CrossRefPubMed Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU: Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol. 2006, 8 (7): 688-699.CrossRefPubMed
26.
go back to reference Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B: Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999, 402 (6762): 672-676.CrossRefPubMed Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B: Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999, 402 (6762): 672-676.CrossRefPubMed
27.
go back to reference Lyakhovich A, Shekhar MP: RAD6B overexpression confers chemoresistance: RAD6 expression during cell cycle and its redistribution to chromatin during DNA damage-induced response. Oncogene. 2004, 23 (17): 3097-3106.CrossRefPubMed Lyakhovich A, Shekhar MP: RAD6B overexpression confers chemoresistance: RAD6 expression during cell cycle and its redistribution to chromatin during DNA damage-induced response. Oncogene. 2004, 23 (17): 3097-3106.CrossRefPubMed
28.
go back to reference Shekhar MP, Lyakhovich A, Visscher DW, Heng H, Kondrat N: Rad6 overexpression induces multinucleation, centrosome amplification, abnormal mitosis, aneuploidy, and transformation. Cancer Res. 2002, 62 (7): 2115-2124.PubMed Shekhar MP, Lyakhovich A, Visscher DW, Heng H, Kondrat N: Rad6 overexpression induces multinucleation, centrosome amplification, abnormal mitosis, aneuploidy, and transformation. Cancer Res. 2002, 62 (7): 2115-2124.PubMed
29.
go back to reference Cheng JC, Esparza S, Sandoval S, Shankar D, Fu C, Sakamoto KM: Potential role of CREB as a prognostic marker in acute myeloid leukemia. Future Oncol. 2007, 3 (4): 475-480.CrossRefPubMed Cheng JC, Esparza S, Sandoval S, Shankar D, Fu C, Sakamoto KM: Potential role of CREB as a prognostic marker in acute myeloid leukemia. Future Oncol. 2007, 3 (4): 475-480.CrossRefPubMed
30.
go back to reference Chwang WB, Arthur JS, Schumacher A, Sweatt JD: The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci. 2007, 27 (46): 12732-12742.CrossRefPubMed Chwang WB, Arthur JS, Schumacher A, Sweatt JD: The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci. 2007, 27 (46): 12732-12742.CrossRefPubMed
31.
go back to reference Lehrmann H, Pritchard LL, Harel-Bellan A: Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res. 2002, 86: 41-65.CrossRefPubMed Lehrmann H, Pritchard LL, Harel-Bellan A: Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res. 2002, 86: 41-65.CrossRefPubMed
Metadata
Title
Expression profile of CREB knockdown in myeloid leukemia cells
Authors
Matteo Pellegrini
Jerry C Cheng
Jon Voutila
Dejah Judelson
Julie Taylor
Stanley F Nelson
Kathleen M Sakamoto
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-264

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine