Skip to main content
Top
Published in: Brain Structure and Function 5/2015

01-09-2015 | Original Article

Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer’s disease (AD)

Authors: Melissa J. Alldred, Sang Han Lee, Eva Petkova, Stephen D. Ginsberg

Published in: Brain Structure and Function | Issue 5/2015

Login to get access

Abstract

Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer’s disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
Appendix
Available only for authorised users
Literature
go back to reference Akeson E, Lambert J (2001) Ts65Dn–localization of the translocation breakpoint and trisomic gene content in a mouse model for Down syndrome. Cytogenet Cell Genet 276:270–276CrossRef Akeson E, Lambert J (2001) Ts65Dn–localization of the translocation breakpoint and trisomic gene content in a mouse model for Down syndrome. Cytogenet Cell Genet 276:270–276CrossRef
go back to reference Alldred MJ, Che S, Ginsberg SD (2008) Terminal continuation (TC) RNA amplification enables expression profiling using minute RNA input obtained from mouse brain. Int J Mol Sci 9:2091–2104PubMedCentralCrossRefPubMed Alldred MJ, Che S, Ginsberg SD (2008) Terminal continuation (TC) RNA amplification enables expression profiling using minute RNA input obtained from mouse brain. Int J Mol Sci 9:2091–2104PubMedCentralCrossRefPubMed
go back to reference Alldred MJ, Duff KE, Ginsberg SD (2012) Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. Neurobiol Dis 45:751–762PubMedCentralCrossRefPubMed Alldred MJ, Duff KE, Ginsberg SD (2012) Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. Neurobiol Dis 45:751–762PubMedCentralCrossRefPubMed
go back to reference Applied Biosystems (2008) Guide to performing relative quantitation of gene expression using real-time quantitative PCR. Gene Expr 2009:1–60 Applied Biosystems (2008) Guide to performing relative quantitation of gene expression using real-time quantitative PCR. Gene Expr 2009:1–60
go back to reference Belichenko PV, Masliah E, Kleschevnikov AM et al (2004) Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. J Comp Neurol 480:281–298CrossRefPubMed Belichenko PV, Masliah E, Kleschevnikov AM et al (2004) Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. J Comp Neurol 480:281–298CrossRefPubMed
go back to reference Belichenko NP, Belichenko PV, Kleschevnikov AM et al (2009) The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J Neurosci 29:5938–5948PubMedCentralCrossRefPubMed Belichenko NP, Belichenko PV, Kleschevnikov AM et al (2009) The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J Neurosci 29:5938–5948PubMedCentralCrossRefPubMed
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300
go back to reference Boada R, Hutaff-Lee C, Schrader A et al (2012) Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial. Transl Psychiatry 2:e141PubMedCentralCrossRefPubMed Boada R, Hutaff-Lee C, Schrader A et al (2012) Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial. Transl Psychiatry 2:e141PubMedCentralCrossRefPubMed
go back to reference Carter TL, Rissman RA, Mishizen-Eberz AJ et al (2004) Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer’s disease patients according to Braak stage. Exp Neurol 187:299–309CrossRefPubMed Carter TL, Rissman RA, Mishizen-Eberz AJ et al (2004) Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer’s disease patients according to Braak stage. Exp Neurol 187:299–309CrossRefPubMed
go back to reference Cataldo AM, Peterhoff CM, Troncoso JC et al (2000) Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer’s disease and Down syndrome. Am J Pathol 157:277–286PubMedCentralCrossRefPubMed Cataldo AM, Peterhoff CM, Troncoso JC et al (2000) Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer’s disease and Down syndrome. Am J Pathol 157:277–286PubMedCentralCrossRefPubMed
go back to reference Cataldo AM, Petanceska S, Peterhoff CM et al (2003) App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of Down syndrome. J Neurosci 23:6788–6792PubMed Cataldo AM, Petanceska S, Peterhoff CM et al (2003) App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of Down syndrome. J Neurosci 23:6788–6792PubMed
go back to reference Chapman R, Hesketh L (2000) Behavioral phenotype of individuals with Down syndrome. Ment Retard Dev Disabil Res Rev 95:84–95CrossRef Chapman R, Hesketh L (2000) Behavioral phenotype of individuals with Down syndrome. Ment Retard Dev Disabil Res Rev 95:84–95CrossRef
go back to reference Che S, Ginsberg SD (2004) Amplification of RNA transcripts using terminal continuation. Lab Invest 84:131–137CrossRefPubMed Che S, Ginsberg SD (2004) Amplification of RNA transcripts using terminal continuation. Lab Invest 84:131–137CrossRefPubMed
go back to reference Chen Z, Simmons MS, Perry RT et al (2008) Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) with Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 147:363–369CrossRefPubMed Chen Z, Simmons MS, Perry RT et al (2008) Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) with Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 147:363–369CrossRefPubMed
go back to reference Chen Y, Dyakin VV, Branch CA et al (2009) In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model. Neurobiol Aging 30:1453–1465PubMedCentralCrossRefPubMed Chen Y, Dyakin VV, Branch CA et al (2009) In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model. Neurobiol Aging 30:1453–1465PubMedCentralCrossRefPubMed
go back to reference Chong S-A, Benilova I, Shaban H et al (2011) Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer’s disease: a multi-electrode array study. Neurobiol Dis 44:284–291CrossRefPubMed Chong S-A, Benilova I, Shaban H et al (2011) Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer’s disease: a multi-electrode array study. Neurobiol Dis 44:284–291CrossRefPubMed
go back to reference Cooper JD, Salehi A, Delcroix JD et al (2001) Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci USA 98:10439–10444PubMedCentralCrossRefPubMed Cooper JD, Salehi A, Delcroix JD et al (2001) Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci USA 98:10439–10444PubMedCentralCrossRefPubMed
go back to reference Costa ACS, Scott-McKean JJ, Stasko MR (2008) Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacology 33:1624–1632CrossRefPubMed Costa ACS, Scott-McKean JJ, Stasko MR (2008) Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacology 33:1624–1632CrossRefPubMed
go back to reference Counts SE, Che S, Ginsberg SD, Mufson EJ (2011) Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer’s disease. J Chem Neuroanat 42:111–117PubMedCentralCrossRefPubMed Counts SE, Che S, Ginsberg SD, Mufson EJ (2011) Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer’s disease. J Chem Neuroanat 42:111–117PubMedCentralCrossRefPubMed
go back to reference Counts SE, Alldred MJ, Che S et al (2014) Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79:172–179PubMedCentralCrossRefPubMed Counts SE, Alldred MJ, Che S et al (2014) Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79:172–179PubMedCentralCrossRefPubMed
go back to reference Dang V, Medina B, Das D et al (2014) Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 75:179–188CrossRefPubMed Dang V, Medina B, Das D et al (2014) Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 75:179–188CrossRefPubMed
go back to reference Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br J Pharmacol 167:324–352PubMedCentralCrossRefPubMed Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br J Pharmacol 167:324–352PubMedCentralCrossRefPubMed
go back to reference Davisson M, Schmidt C, Reeves RH et al (1993) Segmental trisomy as a mouse model for Down syndrome. Prog Clin Biol Res 384:117–133PubMed Davisson M, Schmidt C, Reeves RH et al (1993) Segmental trisomy as a mouse model for Down syndrome. Prog Clin Biol Res 384:117–133PubMed
go back to reference Efron B (2007) Correlation and large-scale simultaneous significance testing. J Am Stat Assoc 102:93–103CrossRef Efron B (2007) Correlation and large-scale simultaneous significance testing. J Am Stat Assoc 102:93–103CrossRef
go back to reference Escorihuela RM, Fernández-Teruel A, Vallina IF et al (1995) A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199:143–146CrossRefPubMed Escorihuela RM, Fernández-Teruel A, Vallina IF et al (1995) A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199:143–146CrossRefPubMed
go back to reference Gardiner K, Fortna A, Bechtel L, Davisson MT (2003) Mouse models of Down syndrome: how useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. Gene 318:137–147CrossRefPubMed Gardiner K, Fortna A, Bechtel L, Davisson MT (2003) Mouse models of Down syndrome: how useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. Gene 318:137–147CrossRefPubMed
go back to reference Ginsberg SD (2005a) Glutamatergic neurotransmission expression profiling in the mouse hippocampus after perforant-path transection. Am J Geriatr Pyschiatry 13:1052–1061CrossRef Ginsberg SD (2005a) Glutamatergic neurotransmission expression profiling in the mouse hippocampus after perforant-path transection. Am J Geriatr Pyschiatry 13:1052–1061CrossRef
go back to reference Ginsberg SD (2005b) RNA amplification strategies for small sample populations. Methods 37:229–237CrossRefPubMed Ginsberg SD (2005b) RNA amplification strategies for small sample populations. Methods 37:229–237CrossRefPubMed
go back to reference Ginsberg SD (2007) Expression profile analysis of brain aging. In: Riddle DR (ed) Brain aging: models, methods and mechanisms. CRC Press, New York, pp 159–185CrossRef Ginsberg SD (2007) Expression profile analysis of brain aging. In: Riddle DR (ed) Brain aging: models, methods and mechanisms. CRC Press, New York, pp 159–185CrossRef
go back to reference Ginsberg SD (2009) Microarray use for the analysis of the CNS. In: Squire LR (ed) Encyclopedia of neuroscience, vol 5. Academic Press, Oxford, pp 835–841CrossRef Ginsberg SD (2009) Microarray use for the analysis of the CNS. In: Squire LR (ed) Encyclopedia of neuroscience, vol 5. Academic Press, Oxford, pp 835–841CrossRef
go back to reference Ginsberg SD, Che S, Wuu J et al (2006) Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J Neurochem 97:475–487CrossRefPubMed Ginsberg SD, Che S, Wuu J et al (2006) Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J Neurochem 97:475–487CrossRefPubMed
go back to reference Ginsberg SD, Alldred MJ, Counts SE et al (2010a) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 68:885–893PubMedCentralCrossRefPubMed Ginsberg SD, Alldred MJ, Counts SE et al (2010a) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 68:885–893PubMedCentralCrossRefPubMed
go back to reference Ginsberg SD, Mufson EJ, Counts SE et al (2010b) Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 22:631–639PubMedCentralPubMed Ginsberg SD, Mufson EJ, Counts SE et al (2010b) Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 22:631–639PubMedCentralPubMed
go back to reference Ginsberg SD, Alldred MJ, Che S (2012) Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease. Neurobiol Dis 45:99–107PubMedCentralCrossRefPubMed Ginsberg SD, Alldred MJ, Che S (2012) Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease. Neurobiol Dis 45:99–107PubMedCentralCrossRefPubMed
go back to reference Granholm AC, Sanders LA, Crnic LS (2000) Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp Neurol 161:647–663CrossRefPubMed Granholm AC, Sanders LA, Crnic LS (2000) Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp Neurol 161:647–663CrossRefPubMed
go back to reference Granholm A-C, Sanders L, Seo H et al (2003) Estrogen alters amyloid precursor protein as well as dendritic and cholinergic markers in a mouse model of Down syndrome. Hippocampus 13:905–914CrossRefPubMed Granholm A-C, Sanders L, Seo H et al (2003) Estrogen alters amyloid precursor protein as well as dendritic and cholinergic markers in a mouse model of Down syndrome. Hippocampus 13:905–914CrossRefPubMed
go back to reference Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedCentralPubMed Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedCentralPubMed
go back to reference Hanney M, Prasher V, Williams N et al (2012) Memantine for dementia in adults older than 40 years with Down’s syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial. Lancet 379:528–536CrossRefPubMed Hanney M, Prasher V, Williams N et al (2012) Memantine for dementia in adults older than 40 years with Down’s syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial. Lancet 379:528–536CrossRefPubMed
go back to reference Holtzman DM, Santucci D, Kilbridge J et al (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc Natl Acad Sci USA 93:13333–13338PubMedCentralCrossRefPubMed Holtzman DM, Santucci D, Kilbridge J et al (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc Natl Acad Sci USA 93:13333–13338PubMedCentralCrossRefPubMed
go back to reference Howe CL, Mobley WC (2004) Signaling endosome hypothesis: a cellular mechanism for long distance communication. J Neurobiol 58:207–216CrossRefPubMed Howe CL, Mobley WC (2004) Signaling endosome hypothesis: a cellular mechanism for long distance communication. J Neurobiol 58:207–216CrossRefPubMed
go back to reference Huang YZ, McNamara JO (2012) Neuroprotective effects of reactive oxygen species mediated by BDNF-independent activation of TrkB. J Neurosci 32:15521–15532PubMedCentralCrossRefPubMed Huang YZ, McNamara JO (2012) Neuroprotective effects of reactive oxygen species mediated by BDNF-independent activation of TrkB. J Neurosci 32:15521–15532PubMedCentralCrossRefPubMed
go back to reference Hunter CL, Isacson O, Nelson M et al (2003) Regional alterations in amyloid precursor protein and nerve growth factor across age in a mouse model of Down’s syndrome. Neurosci Res 45:437–445CrossRefPubMed Hunter CL, Isacson O, Nelson M et al (2003) Regional alterations in amyloid precursor protein and nerve growth factor across age in a mouse model of Down’s syndrome. Neurosci Res 45:437–445CrossRefPubMed
go back to reference Hyde LA, Crnic LS (2001) Age-related deficits in context discrimination learning in Ts65Dn mice that model Down syndrome and Alzheimer’s disease. Behav Neurosci 115:1239–1246CrossRefPubMed Hyde LA, Crnic LS (2001) Age-related deficits in context discrimination learning in Ts65Dn mice that model Down syndrome and Alzheimer’s disease. Behav Neurosci 115:1239–1246CrossRefPubMed
go back to reference Ikonomovic MD, Sheffield R, Armstrong DM (1995) AMPA-selective glutamate receptor subtype immunoreactivity in the hippocampal formation of patients with Alzheimer’s disease. Hippocampus 5:469–486CrossRefPubMed Ikonomovic MD, Sheffield R, Armstrong DM (1995) AMPA-selective glutamate receptor subtype immunoreactivity in the hippocampal formation of patients with Alzheimer’s disease. Hippocampus 5:469–486CrossRefPubMed
go back to reference Ikonomovic MD, Mizukami K, Davies P et al (1997) The loss of GluR2 (3) immunoreactivity precedes neurofibrillary tangle formation in the entorhinal cortex and hippocampus of Alzheimer brain. J Neuropathol Exp Neurol 56:1018–1027CrossRefPubMed Ikonomovic MD, Mizukami K, Davies P et al (1997) The loss of GluR2 (3) immunoreactivity precedes neurofibrillary tangle formation in the entorhinal cortex and hippocampus of Alzheimer brain. J Neuropathol Exp Neurol 56:1018–1027CrossRefPubMed
go back to reference Insausti AM, Megías M, Crespo D et al (1998) Hippocampal volume and neuronal number in Ts65Dn mice: a murine model of Down syndrome. Neurosci Lett 253:175–178CrossRefPubMed Insausti AM, Megías M, Crespo D et al (1998) Hippocampal volume and neuronal number in Ts65Dn mice: a murine model of Down syndrome. Neurosci Lett 253:175–178CrossRefPubMed
go back to reference Jacobs PA, Hassold TJ (1995) The origin of numerical chromosome abnormalities. Adv Genet 33:101–133CrossRefPubMed Jacobs PA, Hassold TJ (1995) The origin of numerical chromosome abnormalities. Adv Genet 33:101–133CrossRefPubMed
go back to reference Jiang Y, Mullaney KA, Peterhoff CM et al (2010) Alzheimer’s-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition. Proc Natl Acad Sci USA 107:1630–1635PubMedCentralCrossRefPubMed Jiang Y, Mullaney KA, Peterhoff CM et al (2010) Alzheimer’s-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition. Proc Natl Acad Sci USA 107:1630–1635PubMedCentralCrossRefPubMed
go back to reference Kaur G, Sharma A, Xu W et al (2014) Glutamatergic transmission aberration: a major cause of behavioral deficits in a murine model of Down’s syndrome. J Neurosci 34:5099–5106PubMedCentralCrossRefPubMed Kaur G, Sharma A, Xu W et al (2014) Glutamatergic transmission aberration: a major cause of behavioral deficits in a murine model of Down’s syndrome. J Neurosci 34:5099–5106PubMedCentralCrossRefPubMed
go back to reference Kelley C, Powers B, Velazquez R (2014a) Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer’s disease. Brain Pathol 24:33–44PubMedCentralCrossRefPubMed Kelley C, Powers B, Velazquez R (2014a) Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer’s disease. Brain Pathol 24:33–44PubMedCentralCrossRefPubMed
go back to reference Kelley CM, Powers BE, Velazquez R et al (2014b) Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice. J Comp Neurol 522:1390–1410PubMedCentralCrossRefPubMed Kelley CM, Powers BE, Velazquez R et al (2014b) Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice. J Comp Neurol 522:1390–1410PubMedCentralCrossRefPubMed
go back to reference Kervern M, Angeli A, Nicole O et al (2012) Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. J Alzheimers Dis 32:183–196PubMed Kervern M, Angeli A, Nicole O et al (2012) Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. J Alzheimers Dis 32:183–196PubMed
go back to reference Koch G, Di Lorenzo F, Bonnì S et al (2012) Impaired LTP- but not LTD-like cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis 31:593–599PubMed Koch G, Di Lorenzo F, Bonnì S et al (2012) Impaired LTP- but not LTD-like cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis 31:593–599PubMed
go back to reference Köhler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol (Berl) 169:41–44CrossRef Köhler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol (Berl) 169:41–44CrossRef
go back to reference Kurt MA, Davies DC, Kidd M et al (2000) Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Res 858:191–197CrossRefPubMed Kurt MA, Davies DC, Kidd M et al (2000) Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Res 858:191–197CrossRefPubMed
go back to reference Leverenz JB, Raskind MA (1998) Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp Neurol 150:296–304CrossRefPubMed Leverenz JB, Raskind MA (1998) Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp Neurol 150:296–304CrossRefPubMed
go back to reference Lockrow J, Prakasam A et al (2009) Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp Neurol 216:278–289PubMedCentralCrossRefPubMed Lockrow J, Prakasam A et al (2009) Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp Neurol 216:278–289PubMedCentralCrossRefPubMed
go back to reference Lockrow J, Boger H, Bimonte-Nelson H, Granholm A-C (2011a) Effects of long-term memantine on memory and neuropathology in Ts65Dn mice, a model for Down syndrome. Behav Brain Res 221:610–622PubMedCentralCrossRefPubMed Lockrow J, Boger H, Bimonte-Nelson H, Granholm A-C (2011a) Effects of long-term memantine on memory and neuropathology in Ts65Dn mice, a model for Down syndrome. Behav Brain Res 221:610–622PubMedCentralCrossRefPubMed
go back to reference Lockrow J, Boger H, Gerhardt G et al (2011b) A noradrenergic lesion exacerbates neurodegeneration in a Down syndrome mouse model. J Alzheimers Dis 23:471–489PubMedCentralPubMed Lockrow J, Boger H, Gerhardt G et al (2011b) A noradrenergic lesion exacerbates neurodegeneration in a Down syndrome mouse model. J Alzheimers Dis 23:471–489PubMedCentralPubMed
go back to reference Lorenzi HA, Reeves RH (2006) Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res 1104:153–159CrossRefPubMed Lorenzi HA, Reeves RH (2006) Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res 1104:153–159CrossRefPubMed
go back to reference Mann DM, Yates PO, Marcyniuk B, Ravindra CR (1986) The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol Appl Neurobiol 12:447–457CrossRefPubMed Mann DM, Yates PO, Marcyniuk B, Ravindra CR (1986) The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol Appl Neurobiol 12:447–457CrossRefPubMed
go back to reference McCulloch CE, Searle SR, Neuhaus JM (2008) Generalized, linear, and mixed models, 2nd edn. Wiley, New York McCulloch CE, Searle SR, Neuhaus JM (2008) Generalized, linear, and mixed models, 2nd edn. Wiley, New York
go back to reference Middei S, Roberto A, Berretta N et al (2010) Learning discloses abnormal structural and functional plasticity at hippocampal synapses in the APP23 mouse model of Alzheimer’s disease. Learn Mem 17:236–240CrossRefPubMed Middei S, Roberto A, Berretta N et al (2010) Learning discloses abnormal structural and functional plasticity at hippocampal synapses in the APP23 mouse model of Alzheimer’s disease. Learn Mem 17:236–240CrossRefPubMed
go back to reference Moon J, Chen M, Gandhy SU et al (2010) Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav Neurosci 124:346–361PubMedCentralCrossRefPubMed Moon J, Chen M, Gandhy SU et al (2010) Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav Neurosci 124:346–361PubMedCentralCrossRefPubMed
go back to reference Mufson EJ, Counts SE, Fahnestock M, Ginsberg SD (2007) Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr Alzheimer Res 4:340–350CrossRefPubMed Mufson EJ, Counts SE, Fahnestock M, Ginsberg SD (2007) Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr Alzheimer Res 4:340–350CrossRefPubMed
go back to reference Nakamura T, Lipton SA (2010) Preventing Ca2+ -mediated nitrosative stress in neurodegenerative diseases: possible pharmacological strategies. Cell Calcium 47:190–197PubMedCentralCrossRefPubMed Nakamura T, Lipton SA (2010) Preventing Ca2+ -mediated nitrosative stress in neurodegenerative diseases: possible pharmacological strategies. Cell Calcium 47:190–197PubMedCentralCrossRefPubMed
go back to reference Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9:277–289PubMed Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9:277–289PubMed
go back to reference Parker SE, Mai CT, Canfield MA et al (2010) Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 88:1008–1016CrossRefPubMed Parker SE, Mai CT, Canfield MA et al (2010) Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 88:1008–1016CrossRefPubMed
go back to reference Peterson GM, Williams LR, Varon S, Gage FH (1987) Loss of GABAergic neurons in medial septum after fimbria-fornix transection. Neurosci Lett 76:140–144CrossRefPubMed Peterson GM, Williams LR, Varon S, Gage FH (1987) Loss of GABAergic neurons in medial septum after fimbria-fornix transection. Neurosci Lett 76:140–144CrossRefPubMed
go back to reference Peterson GM, Lanford GW, Powell EW (1990) Fate of septohippocampal neurons following fimbria-fornix transection: a time course analysis. Brain Res Bull 25:129–137CrossRefPubMed Peterson GM, Lanford GW, Powell EW (1990) Fate of septohippocampal neurons following fimbria-fornix transection: a time course analysis. Brain Res Bull 25:129–137CrossRefPubMed
go back to reference Pollonini G, Gao V, Rabe A, Palminiello S (2008) Abnormal expression of synaptic proteins and neurotrophin-3 in the Down syndrome mouse model Ts65Dn. Neuroscience 156:99–106PubMedCentralCrossRefPubMed Pollonini G, Gao V, Rabe A, Palminiello S (2008) Abnormal expression of synaptic proteins and neurotrophin-3 in the Down syndrome mouse model Ts65Dn. Neuroscience 156:99–106PubMedCentralCrossRefPubMed
go back to reference Proctor DT, Coulson EJ, Dodd PR (2010) Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the Alzheimer inferior temporal cortex is correlated with disease pathology. J Alzheimers Dis 21:795–811PubMed Proctor DT, Coulson EJ, Dodd PR (2010) Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the Alzheimer inferior temporal cortex is correlated with disease pathology. J Alzheimers Dis 21:795–811PubMed
go back to reference Rajagopal R, Chen Z-Y, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658CrossRefPubMed Rajagopal R, Chen Z-Y, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658CrossRefPubMed
go back to reference Rammes G, Hasenjäger A, Sroka-Saidi K et al (2011) Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology 60:982–990CrossRefPubMed Rammes G, Hasenjäger A, Sroka-Saidi K et al (2011) Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology 60:982–990CrossRefPubMed
go back to reference Reeves RH, Irving NG, Moran TH et al (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184CrossRefPubMed Reeves RH, Irving NG, Moran TH et al (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184CrossRefPubMed
go back to reference Reisberg B, Doody R, Stöffler A (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341CrossRefPubMed Reisberg B, Doody R, Stöffler A (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341CrossRefPubMed
go back to reference Reisberg B, Doody R, Stoffler A (2006) A 24-week open-label extension study of memantine in moderate to severe Alzheimer disease. Arch Neurol 63:49–54CrossRefPubMed Reisberg B, Doody R, Stoffler A (2006) A 24-week open-label extension study of memantine in moderate to severe Alzheimer disease. Arch Neurol 63:49–54CrossRefPubMed
go back to reference Rueda N, Llorens-Martín M, Flórez J et al (2010) Memantine normalizes several phenotypic features in the Ts65Dn mouse model of Down syndrome. J Alzheimers Dis 21:277–290PubMed Rueda N, Llorens-Martín M, Flórez J et al (2010) Memantine normalizes several phenotypic features in the Ts65Dn mouse model of Down syndrome. J Alzheimers Dis 21:277–290PubMed
go back to reference Rueda N, Flórez J, Martínez-Cué C (2012) Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012:584071PubMedCentralPubMed Rueda N, Flórez J, Martínez-Cué C (2012) Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012:584071PubMedCentralPubMed
go back to reference Salehi A, Delcroix J-D, Belichenko PV et al (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42CrossRefPubMed Salehi A, Delcroix J-D, Belichenko PV et al (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42CrossRefPubMed
go back to reference Saran NG, Pletcher MT, Natale JE et al (2003) Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Hum Mol Genet 12:2013–2019CrossRefPubMed Saran NG, Pletcher MT, Natale JE et al (2003) Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Hum Mol Genet 12:2013–2019CrossRefPubMed
go back to reference Shaulsky G, Loomis WF (2002) Gene expression patterns in Dictyostelium using microarrays. Protist 153:93–98CrossRefPubMed Shaulsky G, Loomis WF (2002) Gene expression patterns in Dictyostelium using microarrays. Protist 153:93–98CrossRefPubMed
go back to reference Skaper SD (2008) The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 7:46–62CrossRefPubMed Skaper SD (2008) The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 7:46–62CrossRefPubMed
go back to reference Stempler S, Ruppin E (2012) Analyzing gene expression from whole tissue vs. different cell types reveals the central role of neurons in predicting severity of Alzheimer’s disease. PLoS One 7:e45879PubMedCentralCrossRefPubMed Stempler S, Ruppin E (2012) Analyzing gene expression from whole tissue vs. different cell types reveals the central role of neurons in predicting severity of Alzheimer’s disease. PLoS One 7:e45879PubMedCentralCrossRefPubMed
go back to reference Sturgeon X, Gardiner KJ (2011) Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm Genome 22:261–271CrossRefPubMed Sturgeon X, Gardiner KJ (2011) Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm Genome 22:261–271CrossRefPubMed
go back to reference Talantova M, Sanz-Blasco S, Zhang X et al (2013) Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 110:E2518–E2527PubMedCentralCrossRefPubMed Talantova M, Sanz-Blasco S, Zhang X et al (2013) Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 110:E2518–E2527PubMedCentralCrossRefPubMed
go back to reference Tuszynski M (2002) Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol 1:51–57CrossRefPubMed Tuszynski M (2002) Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol 1:51–57CrossRefPubMed
go back to reference Tuszynski MH (2007) Nerve growth factor gene therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 21:179–189CrossRefPubMed Tuszynski MH (2007) Nerve growth factor gene therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 21:179–189CrossRefPubMed
go back to reference Velazquez R, Ash JA, Powers BE et al (2013) Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 58:92–101PubMedCentralCrossRefPubMed Velazquez R, Ash JA, Powers BE et al (2013) Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 58:92–101PubMedCentralCrossRefPubMed
go back to reference Wang T, Huang Q, Reiman EM et al (2013) Effect of memantine on clinical ratings, fluorodeoxyglucose positron emission tomography measurements, and cerebrospinal fluid assays in patients with moderate to severe Alzheimer dementia. J Clin Pyschopharmacol 33:636–642CrossRef Wang T, Huang Q, Reiman EM et al (2013) Effect of memantine on clinical ratings, fluorodeoxyglucose positron emission tomography measurements, and cerebrospinal fluid assays in patients with moderate to severe Alzheimer dementia. J Clin Pyschopharmacol 33:636–642CrossRef
go back to reference Williams R, Chung JY, Ylaya K et al (2010) Characterizations and validations of novel antibodies toward translational research. Proteomics Clin Appl 4:618–625CrossRefPubMed Williams R, Chung JY, Ylaya K et al (2010) Characterizations and validations of novel antibodies toward translational research. Proteomics Clin Appl 4:618–625CrossRefPubMed
go back to reference Wisniewski K, Wisniewski H, Wen G (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282CrossRefPubMed Wisniewski K, Wisniewski H, Wen G (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282CrossRefPubMed
Metadata
Title
Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer’s disease (AD)
Authors
Melissa J. Alldred
Sang Han Lee
Eva Petkova
Stephen D. Ginsberg
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0839-0

Other articles of this Issue 5/2015

Brain Structure and Function 5/2015 Go to the issue