Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Research article

Expression patterns of small numbers of transcripts from functionally-related pathways predict survival in multiple cancers

Authors: Jordan Mandel, Huabo Wang, Daniel P. Normolle, Wei Chen, Qi Yan, Peter C. Lucas, Panayiotis V. Benos, Edward V. Prochownik

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Genetic profiling of cancers for variations in copy number, structure or expression of certain genes has improved diagnosis, risk-stratification and therapeutic decision-making. However the tumor-restricted nature of these changes limits their application to certain cancer types or sub-types. Tests with broader prognostic capabilities are lacking.

Methods

Using RNAseq data from 10,227 tumors in The Cancer Genome Atlas (TCGA), we evaluated 212 protein-coding transcripts from 12 cancer-related pathways. We employed t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern difference among each pathway’s transcripts. We have previously used t-SNE to show that survival in some cancers correlates with expression patterns of transcripts encoding ribosomal proteins and enzymes for cholesterol biosynthesis and fatty acid oxidation.

Results

Using the above 212 transcripts, t-SNE-assisted transcript pattern profiling identified patient cohorts with significant survival differences in 30 of 34 different cancer types comprising 9350 tumors (91.4% of all TCGA cases). Small subsets of each pathway’s transcripts, comprising no more than 50–60 from the original group, played particularly prominent roles in determining overall t-SNE patterns. In several cases, further refinements in long-term survival could be achieved by sequential t-SNE profiling with two pathways’ transcripts, by a combination of t-SNE plus whole transcriptome profiling or by employing t-SNE on immuno-histochemically defined breast cancer subtypes. In two cancer types, individuals with Stage IV disease at presentation could be readily subdivided into groups with highly significant survival differences based on t-SNE-based tumor sub-classification.

Conclusions

t-SNE-assisted profiling of a small number of transcripts allows the prediction of long-term survival across multiple cancer types.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cejovic J, Radenkovic J, Mladenovic V, Stanojevic A, Miletic M, Radanovic S, et al. Using semantic web technologies to enable cancer genomics discovery at petabyte scale. Cancer Inform. 2018;17 1176935118774787.CrossRef Cejovic J, Radenkovic J, Mladenovic V, Stanojevic A, Miletic M, Radanovic S, et al. Using semantic web technologies to enable cancer genomics discovery at petabyte scale. Cancer Inform. 2018;17 1176935118774787.CrossRef
2.
go back to reference Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J Pathol. 2018;244:512–24.CrossRef Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J Pathol. 2018;244:512–24.CrossRef
3.
go back to reference Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29.CrossRef Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29.CrossRef
4.
go back to reference van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRef van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRef
5.
go back to reference Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124:1682–90.CrossRef Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124:1682–90.CrossRef
6.
go back to reference van der Maaten LJP, Hinton GE. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605. van der Maaten LJP, Hinton GE. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
7.
go back to reference Kulkarni S, Dolezal JM, Wang H, Jackson L, Lu J, Frodey BP, et al. Ribosomopathy-like properties of murine and human cancers. PLoS One. 2017;12:e0182705.CrossRef Kulkarni S, Dolezal JM, Wang H, Jackson L, Lu J, Frodey BP, et al. Ribosomopathy-like properties of murine and human cancers. PLoS One. 2017;12:e0182705.CrossRef
8.
go back to reference Dolezal JM, Dash AP, Prochownik EV. Diagnostic and prognostic implications of ribosomal protein transcript expression patterns in human cancers. BMC Cancer. 2018;18:275.CrossRef Dolezal JM, Dash AP, Prochownik EV. Diagnostic and prognostic implications of ribosomal protein transcript expression patterns in human cancers. BMC Cancer. 2018;18:275.CrossRef
9.
go back to reference Wang H, Lu J, Dolezal JM, Kulkarni S, Chen A, Gorka J, et al. Inhibition of hepatocellular carcinoma by metabolic normalization. 2019; (submitted for publication). Wang H, Lu J, Dolezal JM, Kulkarni S, Chen A, Gorka J, et al. Inhibition of hepatocellular carcinoma by metabolic normalization. 2019; (submitted for publication).
10.
go back to reference Pelletier J, Thomas G, Volarević S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer. 2018;18:51–63.CrossRef Pelletier J, Thomas G, Volarević S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer. 2018;18:51–63.CrossRef
11.
go back to reference Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.CrossRef Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.CrossRef
12.
go back to reference Buj R, Aird KM. Deoxyribonucleotide triphosphate metabolism in cancer and metabolic disease. Front Endocrinol (Lausanne). 2018;9:177.CrossRef Buj R, Aird KM. Deoxyribonucleotide triphosphate metabolism in cancer and metabolic disease. Front Endocrinol (Lausanne). 2018;9:177.CrossRef
13.
go back to reference Icard P, Lincet H. A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys Acta. 2012;1826:423–33.PubMed Icard P, Lincet H. A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys Acta. 2012;1826:423–33.PubMed
14.
go back to reference Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an anti-oxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012 Aug 1;53(3):421–36.CrossRef Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an anti-oxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012 Aug 1;53(3):421–36.CrossRef
15.
go back to reference Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodriguez-Enriquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol. 2014;50:10–23.CrossRef Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodriguez-Enriquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol. 2014;50:10–23.CrossRef
18.
go back to reference van der Maaten L. Learning a parametric embedding by preserving local structure. J Mach Learn Res. 2009;5:384–91. van der Maaten L. Learning a parametric embedding by preserving local structure. J Mach Learn Res. 2009;5:384–91.
20.
go back to reference Ho TK. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 1998;20:832–44.CrossRef Ho TK. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 1998;20:832–44.CrossRef
22.
go back to reference Broom BM, Ryan MC, Brown RE, Ikeda F, Stucky M, Kane DW, et al. A galaxy implementation of next-generation clustered heatmaps for interactive exploration of molecular profiling data. Cancer Res. 2017;77:e23–6.CrossRef Broom BM, Ryan MC, Brown RE, Ikeda F, Stucky M, Kane DW, et al. A galaxy implementation of next-generation clustered heatmaps for interactive exploration of molecular profiling data. Cancer Res. 2017;77:e23–6.CrossRef
23.
go back to reference Burczynski ME, Oestreicher JL, Cahilly MJ, Mounts DP, Whitley MZ, Speicher LA, Prepicchio WL. Clinical pharmacogenomics and transcriptional profiling in early phase oncology clinical trials. Curr Mol Med. 2005;5:83–102.CrossRef Burczynski ME, Oestreicher JL, Cahilly MJ, Mounts DP, Whitley MZ, Speicher LA, Prepicchio WL. Clinical pharmacogenomics and transcriptional profiling in early phase oncology clinical trials. Curr Mol Med. 2005;5:83–102.CrossRef
24.
go back to reference Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.CrossRef Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.CrossRef
25.
go back to reference Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.CrossRef Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.CrossRef
26.
go back to reference Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Roth F, Sotiriou C. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol. 2018;29:895–902.CrossRef Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Roth F, Sotiriou C. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol. 2018;29:895–902.CrossRef
27.
go back to reference Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer registry. Cancer. 2007;109:1721–8.CrossRef Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer registry. Cancer. 2007;109:1721–8.CrossRef
28.
go back to reference Fallahpour S, Navaneelan T, De P, Borgo A. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open. 2017;5:E734–9.CrossRef Fallahpour S, Navaneelan T, De P, Borgo A. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open. 2017;5:E734–9.CrossRef
29.
go back to reference Gao JJ, Swain SM. Luminal a breast cancer and molecular assays: a review. Oncologist. 2018;23:556–65.CrossRef Gao JJ, Swain SM. Luminal a breast cancer and molecular assays: a review. Oncologist. 2018;23:556–65.CrossRef
30.
go back to reference Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pentenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.CrossRef Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pentenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.CrossRef
31.
go back to reference Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fugua SA. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.CrossRef Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fugua SA. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.CrossRef
32.
go back to reference Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 2011;39(Database):D685–90.CrossRef Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 2011;39(Database):D685–90.CrossRef
33.
go back to reference Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Saw KR, Ozenberger BA, et al. The Cancer genome Atlas pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.CrossRef Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Saw KR, Ozenberger BA, et al. The Cancer genome Atlas pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.CrossRef
34.
go back to reference Goldberg H, Klaassen Z, Chandrasekar T, Flesher N, Hamilton RJ, Jewett MAS. Germ cell testicular tumors-contemporary diagnosis, staging and management of localized and advanced disease. Urology. 2019;125:8–19.CrossRef Goldberg H, Klaassen Z, Chandrasekar T, Flesher N, Hamilton RJ, Jewett MAS. Germ cell testicular tumors-contemporary diagnosis, staging and management of localized and advanced disease. Urology. 2019;125:8–19.CrossRef
35.
go back to reference Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, et al. MYC deregulation in primary human cancers. Genes (Basel). 2017;8 pii: E151.CrossRef Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, et al. MYC deregulation in primary human cancers. Genes (Basel). 2017;8 pii: E151.CrossRef
36.
go back to reference Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18:3004–16.CrossRef Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18:3004–16.CrossRef
37.
go back to reference Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27:599–608.CrossRef Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27:599–608.CrossRef
38.
go back to reference Galvani E, Peters GJ, Giovannetti E. Thymidylate synthase inhibitors for non-small cell lung cancer. Expert Opin Investig Drugs. 2011;20:1343–56.CrossRef Galvani E, Peters GJ, Giovannetti E. Thymidylate synthase inhibitors for non-small cell lung cancer. Expert Opin Investig Drugs. 2011;20:1343–56.CrossRef
39.
go back to reference Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330:1340–4.CrossRef Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330:1340–4.CrossRef
40.
go back to reference Liu Q, Yu Z, Xiang Y, Wu N, Wu L, Xu B, et al. Prognostic and predictive significance of thymidylate synthase protein expression in non-small cell lung cancer: a systematic review and meta-analysis. Cancer Biomark. 2015;15:65–78.CrossRef Liu Q, Yu Z, Xiang Y, Wu N, Wu L, Xu B, et al. Prognostic and predictive significance of thymidylate synthase protein expression in non-small cell lung cancer: a systematic review and meta-analysis. Cancer Biomark. 2015;15:65–78.CrossRef
41.
go back to reference Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.CrossRef Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.CrossRef
42.
go back to reference Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168:629–43.CrossRef Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168:629–43.CrossRef
43.
go back to reference Porter JR, Fisher BE, Batchelor E. p53 pulses diversify target gene expression dynamics in an mRNA half-life-dependent manner and delineate co-regulated target gene subnetworks. Cell Syst. 2016;2:272–82.CrossRef Porter JR, Fisher BE, Batchelor E. p53 pulses diversify target gene expression dynamics in an mRNA half-life-dependent manner and delineate co-regulated target gene subnetworks. Cell Syst. 2016;2:272–82.CrossRef
45.
go back to reference Soutourina J. Transcription regulation by the Mediator complex. Nat Rev Mol Cell Biol. 2018;19:262–74.CrossRef Soutourina J. Transcription regulation by the Mediator complex. Nat Rev Mol Cell Biol. 2018;19:262–74.CrossRef
46.
go back to reference Vos SM, Farnung L, Urlaub H, Cramer P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature. 2018;560:601–6.CrossRef Vos SM, Farnung L, Urlaub H, Cramer P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature. 2018;560:601–6.CrossRef
47.
go back to reference Vos SM, Farnung L, Boehning M, Wigge C, Linden A, Urlaub H, Cramer P. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature. 2018;560:607–12.CrossRef Vos SM, Farnung L, Boehning M, Wigge C, Linden A, Urlaub H, Cramer P. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature. 2018;560:607–12.CrossRef
48.
go back to reference Wong RWJ, Ngoc PCT, Leong WZ, Yam AWY, Zhang T, Asamitsu K, et al. Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia. Blood. 2017;130:2326–38.CrossRef Wong RWJ, Ngoc PCT, Leong WZ, Yam AWY, Zhang T, Asamitsu K, et al. Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia. Blood. 2017;130:2326–38.CrossRef
49.
go back to reference Audic Y, Hartley RS. Post-transcriptional regulation in cancer. Biol Cell. 2004;96:479–98.CrossRef Audic Y, Hartley RS. Post-transcriptional regulation in cancer. Biol Cell. 2004;96:479–98.CrossRef
50.
go back to reference Frye M, Harada BT, Behm M. He C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–9.CrossRef Frye M, Harada BT, Behm M. He C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–9.CrossRef
51.
go back to reference Bhati R, Patterson C, Livasy CA, Fan C, Ketelsen D, Hu Z, et al. Molecular characterization of human breast tumor vascular cells. Am J Pathol. 2008;172:1381–90.CrossRef Bhati R, Patterson C, Livasy CA, Fan C, Ketelsen D, Hu Z, et al. Molecular characterization of human breast tumor vascular cells. Am J Pathol. 2008;172:1381–90.CrossRef
52.
go back to reference Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, et al. A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther. 2013;12:685–95.CrossRef Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, et al. A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther. 2013;12:685–95.CrossRef
53.
go back to reference Werb Z, Lu P. The role of stroma in tumor development. Cancer J. 2015;21:250–3.CrossRef Werb Z, Lu P. The role of stroma in tumor development. Cancer J. 2015;21:250–3.CrossRef
Metadata
Title
Expression patterns of small numbers of transcripts from functionally-related pathways predict survival in multiple cancers
Authors
Jordan Mandel
Huabo Wang
Daniel P. Normolle
Wei Chen
Qi Yan
Peter C. Lucas
Panayiotis V. Benos
Edward V. Prochownik
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5851-6

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine