Skip to main content
Top
Published in: Brain Structure and Function 6/2016

Open Access 01-07-2016 | Original Article

Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis

Authors: Patrick N. Stoney, Yara D. Fragoso, Reem Bu Saeed, Anna Ashton, Timothy Goodman, Claire Simons, Mohamed S. Gomaa, Angelo Sementilli, Leonardo Sementilli, Alexander W. Ross, Peter J. Morgan, Peter J. McCaffery

Published in: Brain Structure and Function | Issue 6/2016

Login to get access

Abstract

Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2–7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2–7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.
Literature
go back to reference Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240CrossRefPubMedPubMedCentral Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240CrossRefPubMedPubMedCentral
go back to reference Abu-Abed S, MacLean G, Fraulob V, Chambon P, Petkovich M, Dolle P (2002) Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech Dev 110:173–177CrossRefPubMed Abu-Abed S, MacLean G, Fraulob V, Chambon P, Petkovich M, Dolle P (2002) Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech Dev 110:173–177CrossRefPubMed
go back to reference Aoto J, Nam CI, Poon MM, Ting P, Chen L (2008) Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60(2):308–320CrossRefPubMedPubMedCentral Aoto J, Nam CI, Poon MM, Ting P, Chen L (2008) Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60(2):308–320CrossRefPubMedPubMedCentral
go back to reference Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312:596–600CrossRefPubMed Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312:596–600CrossRefPubMed
go back to reference Chen N, Napoli JL (2008) All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J 22(1):236–245CrossRefPubMed Chen N, Napoli JL (2008) All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J 22(1):236–245CrossRefPubMed
go back to reference Chithalen JV, Luu L, Petkovich M, Jones G (2002) HPLC-MS/MS analysis of the products generated from all-trans-retinoic acid using recombinant human CYP26A. J Lipid Res 43(7):1133–1142CrossRefPubMed Chithalen JV, Luu L, Petkovich M, Jones G (2002) HPLC-MS/MS analysis of the products generated from all-trans-retinoic acid using recombinant human CYP26A. J Lipid Res 43(7):1133–1142CrossRefPubMed
go back to reference Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V, Jaffard R, Higueret P (2001) Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci 21(16):6423–6429PubMed Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V, Jaffard R, Higueret P (2001) Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci 21(16):6423–6429PubMed
go back to reference Fragoso YD, Shearer KD, Sementilli A, de Carvalho LV, McCaffery PJ (2012) High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct 217(2):473–483CrossRefPubMed Fragoso YD, Shearer KD, Sementilli A, de Carvalho LV, McCaffery PJ (2012) High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct 217(2):473–483CrossRefPubMed
go back to reference Gomaa MS, Bridgens CE, Aboraia AS, Veal GJ, Redfern CP, Brancale A, Armstrong JL, Simons C (2011) Small molecule inhibitors of retinoic acid 4-hydroxylase (CYP26): synthesis and biological evaluation of imidazole methyl 3-(4-(aryl-2-ylamino)phenyl)propanoates. J Med Chem 54(8):2778–2791CrossRefPubMed Gomaa MS, Bridgens CE, Aboraia AS, Veal GJ, Redfern CP, Brancale A, Armstrong JL, Simons C (2011) Small molecule inhibitors of retinoic acid 4-hydroxylase (CYP26): synthesis and biological evaluation of imidazole methyl 3-(4-(aryl-2-ylamino)phenyl)propanoates. J Med Chem 54(8):2778–2791CrossRefPubMed
go back to reference Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K, Ross A, McCaffery P (2012) Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus 22(11):2171–2183CrossRefPubMedPubMedCentral Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K, Ross A, McCaffery P (2012) Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus 22(11):2171–2183CrossRefPubMedPubMedCentral
go back to reference Helfer G, Ross AW, Russell L, Thomson LM, Shearer KD, Goodman TH, McCaffery PJ, Morgan PJ (2012) Photoperiod regulates vitamin A and Wnt/beta-catenin signaling in F344 rats. Endocrinology 153(2):815–824CrossRefPubMed Helfer G, Ross AW, Russell L, Thomson LM, Shearer KD, Goodman TH, McCaffery PJ, Morgan PJ (2012) Photoperiod regulates vitamin A and Wnt/beta-catenin signaling in F344 rats. Endocrinology 153(2):815–824CrossRefPubMed
go back to reference Hellmann-Regen J, Kronenberg G, Uhlemann R, Freyer D, Endres M, Gertz K (2013) Accelerated degradation of retinoic acid by activated microglia. J Neuroimmunol 256(1–2):1–6CrossRefPubMed Hellmann-Regen J, Kronenberg G, Uhlemann R, Freyer D, Endres M, Gertz K (2013) Accelerated degradation of retinoic acid by activated microglia. J Neuroimmunol 256(1–2):1–6CrossRefPubMed
go back to reference Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17(15):5820–5829PubMed Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17(15):5820–5829PubMed
go back to reference Ma JJ, Han BC, Yang Y, Peng JP (2012) Retinoic acid synthesis and metabolism are concurrent in the mouse uterus during peri-implantation. Cell Tissue Res 350(3):525–537CrossRefPubMed Ma JJ, Han BC, Yang Y, Peng JP (2012) Retinoic acid synthesis and metabolism are concurrent in the mouse uterus during peri-implantation. Cell Tissue Res 350(3):525–537CrossRefPubMed
go back to reference Makitie LT, Kanerva K, Polvikoski T, Paetau A, Andersson LC (2013) Brain neurons express ornithine decarboxylase-activating antizyme inhibitor 2 with accumulation in Alzheimer’s disease. Brain Pathol 20(3):571–580CrossRef Makitie LT, Kanerva K, Polvikoski T, Paetau A, Andersson LC (2013) Brain neurons express ornithine decarboxylase-activating antizyme inhibitor 2 with accumulation in Alzheimer’s disease. Brain Pathol 20(3):571–580CrossRef
go back to reference McCaffery P, Simons C (2007) Prospective teratology of retinoic acid metabolic blocking agents (RAMBAs) and loss of CYP26 activity. Curr Pharm Des 13(29):3020–3037CrossRefPubMed McCaffery P, Simons C (2007) Prospective teratology of retinoic acid metabolic blocking agents (RAMBAs) and loss of CYP26 activity. Curr Pharm Des 13(29):3020–3037CrossRefPubMed
go back to reference Napoli JL (2012) Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta 1821(1):152–167CrossRefPubMed Napoli JL (2012) Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta 1821(1):152–167CrossRefPubMed
go back to reference Neumann M, Gabel D (2002) Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 50(3):437–439CrossRefPubMed Neumann M, Gabel D (2002) Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 50(3):437–439CrossRefPubMed
go back to reference Ono K, Yamada M (2012) Vitamin A and Alzheimer’s disease. Geriatri Gerontol Int 12(2):180–188CrossRef Ono K, Yamada M (2012) Vitamin A and Alzheimer’s disease. Geriatri Gerontol Int 12(2):180–188CrossRef
go back to reference Ray W, Bain G, Yao M, Gottlieb DI (1997) CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem 272:18702–18708CrossRefPubMed Ray W, Bain G, Yao M, Gottlieb DI (1997) CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem 272:18702–18708CrossRefPubMed
go back to reference Ross AW, Johnson CE, Bell LM, Reilly L, Duncan JS, Barrett P, Heideman PD, Morgan PJ (2009) Divergent regulation of hypothalamic neuropeptide Y and agouti-related protein by photoperiod in F344 rats with differential food intake and growth. J Neuroendocrinol 21(7):610–619CrossRefPubMed Ross AW, Johnson CE, Bell LM, Reilly L, Duncan JS, Barrett P, Heideman PD, Morgan PJ (2009) Divergent regulation of hypothalamic neuropeptide Y and agouti-related protein by photoperiod in F344 rats with differential food intake and growth. J Neuroendocrinol 21(7):610–619CrossRefPubMed
go back to reference Rossant J, Zirngibl R, Cado D, Shago M, Giguère V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344CrossRefPubMed Rossant J, Zirngibl R, Cado D, Shago M, Giguère V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344CrossRefPubMed
go back to reference Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: the dentate gyrus and pattern separation. Behav Brain Res 226(1):56–65CrossRefPubMed Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: the dentate gyrus and pattern separation. Behav Brain Res 226(1):56–65CrossRefPubMed
go back to reference Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47(6):719–730CrossRefPubMed Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47(6):719–730CrossRefPubMed
go back to reference Slavotinek AM, Mehrotra P, Nazarenko I, Tang PL, Lao R, Cameron D, Li B, Chu C, Chou C, Marqueling AL, Yahyavi M, Cordoro K, Frieden I, Glaser T, Prescott T, Morren MA, Devriendt K, Kwok PY, Petkovich M, Desnick RJ (2013) Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1. Hum Mol Genet 22(4):696–703CrossRefPubMed Slavotinek AM, Mehrotra P, Nazarenko I, Tang PL, Lao R, Cameron D, Li B, Chu C, Chou C, Marqueling AL, Yahyavi M, Cordoro K, Frieden I, Glaser T, Prescott T, Morren MA, Devriendt K, Kwok PY, Petkovich M, Desnick RJ (2013) Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1. Hum Mol Genet 22(4):696–703CrossRefPubMed
go back to reference Sodhi RK, Singh N (2014) Retinoids as potential targets for Alzheimer’s disease. Pharmacol Biochem Behav 120:117–123CrossRefPubMed Sodhi RK, Singh N (2014) Retinoids as potential targets for Alzheimer’s disease. Pharmacol Biochem Behav 120:117–123CrossRefPubMed
go back to reference Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G (1999) Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 216(1):282–296CrossRefPubMed Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G (1999) Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 216(1):282–296CrossRefPubMed
go back to reference Thompson Haskell G, Maynard TM, Shatzmiller RA, Lamantia AS (2002) Retinoic acid signaling at sites of plasticity in the mature central nervous system. J Comp Neurol 452(3):228–241CrossRefPubMed Thompson Haskell G, Maynard TM, Shatzmiller RA, Lamantia AS (2002) Retinoic acid signaling at sites of plasticity in the mature central nervous system. J Comp Neurol 452(3):228–241CrossRefPubMed
go back to reference Topletz AR, Thatcher JE, Zelter A, Lutz JD, Tay S, Nelson WL, Isoherranen N (2012) Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. Biochem Pharmacol 83(1):149–163CrossRefPubMed Topletz AR, Thatcher JE, Zelter A, Lutz JD, Tay S, Nelson WL, Isoherranen N (2012) Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. Biochem Pharmacol 83(1):149–163CrossRefPubMed
go back to reference Wagner M, Han B, Jessell TM (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116:55–66PubMed Wagner M, Han B, Jessell TM (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116:55–66PubMed
go back to reference Wagner E, Luo T, Sakai Y, Parada LF, Drager UC (2006) Retinoic acid delineates the topography of neuronal plasticity in postnatal cerebral cortex. Eur J Neurosci 24(2):329–340CrossRefPubMed Wagner E, Luo T, Sakai Y, Parada LF, Drager UC (2006) Retinoic acid delineates the topography of neuronal plasticity in postnatal cerebral cortex. Eur J Neurosci 24(2):329–340CrossRefPubMed
go back to reference Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M, Nishino J, Saijoh Y, Sakai Y, Hamada H (2004) Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev Cell 6:411–422CrossRefPubMed Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M, Nishino J, Saijoh Y, Sakai Y, Hamada H (2004) Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev Cell 6:411–422CrossRefPubMed
go back to reference Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134CrossRefPubMedPubMedCentral Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134CrossRefPubMedPubMedCentral
go back to reference Zhang Y, Zolfaghari R, Ross AC (2010) Multiple retinoic acid response elements cooperate to enhance the inducibility of CYP26A1 gene expression in liver. Gene 464(1–2):32–43CrossRefPubMedPubMedCentral Zhang Y, Zolfaghari R, Ross AC (2010) Multiple retinoic acid response elements cooperate to enhance the inducibility of CYP26A1 gene expression in liver. Gene 464(1–2):32–43CrossRefPubMedPubMedCentral
Metadata
Title
Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis
Authors
Patrick N. Stoney
Yara D. Fragoso
Reem Bu Saeed
Anna Ashton
Timothy Goodman
Claire Simons
Mohamed S. Gomaa
Angelo Sementilli
Leonardo Sementilli
Alexander W. Ross
Peter J. Morgan
Peter J. McCaffery
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1102-z

Other articles of this Issue 6/2016

Brain Structure and Function 6/2016 Go to the issue