Skip to main content
Top
Published in: Angiogenesis 4/2012

01-12-2012 | Original Paper

Expression of stromal genes associated with the angiogenic response are not differentiated between human tumour xenografts with divergent vascular morphologies

Authors: Matthew Farren, Susie Weston, Helen Brown, Nicola Broadbent, Steve Powell, Robert Shaw, Neil R. Smith, Rachael Inglis, Alex Graham, Sue Ashton, Stephen R. Wedge, Simon T. Barry

Published in: Angiogenesis | Issue 4/2012

Login to get access

Abstract

Human tumour xenografts have commonly been used to explore the mechanisms of tumour angiogenesis and the interaction of tumour cells with their microenvironment, as well as predict potential utility of anti-angiogenic inhibitors across different tumour types. To investigate how well human tumour xenografts can be used to differentiate the effects of stromal targeting agents we performed a comparative assessment of the murine angiogenic response across a panel of pre-clinical tumour xenografts. By analysing a panel of 22 tumour xenografts with a range of vascular morphologies, micro-vessel densities and levels of fibroblast and inflammatory infiltrate, we have examined the relationship between angiogenic stroma and human tumour models. These models were studied using a combination of immunohistochemistry and species specific mRNA profiling to differentiate the tumour and stromal transcript mRNA profiles. Principal Component Analysis (PCA) and regression analysis was used to investigate the transcriptional relationships between the individual models and the correlation with the stromal architecture. We found the human tumour cell expressed factors to be independent of the murine host responses such as microvessel density, and fibroblast or macrophage cellular infiltrate. Moreover mRNA profiling of the mouse stroma suggested that the host response to the different tumours was relatively uniform despite differences in stromal structures within the tumour. Supporting this, models with different stromal compositions responded similarly to cediranib, a small molecule inhibitor of VEGF signalling. The data indicate that although the angiogenic response to the tumour results in reproducible stromal architectures, these responses are not differentiated at the level of gene expression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307PubMedCrossRef Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307PubMedCrossRef
2.
go back to reference Huang H, Bhat A, Woodnutt G, Lappe R (2010) Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 10:575–585PubMedCrossRef Huang H, Bhat A, Woodnutt G, Lappe R (2010) Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 10:575–585PubMedCrossRef
3.
go back to reference Thurston G, Kitajewski J (2008) VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer 99:1204–1209PubMedCrossRef Thurston G, Kitajewski J (2008) VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer 99:1204–1209PubMedCrossRef
4.
go back to reference Hurwitz HI, Fehrenbacher L, Hainsworth JD, Heim W, Berlin J, Holmgren E, Hambleton J, Novotny WF, Kabbinavar F (2005) Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23:3502–3508PubMedCrossRef Hurwitz HI, Fehrenbacher L, Hainsworth JD, Heim W, Berlin J, Holmgren E, Hambleton J, Novotny WF, Kabbinavar F (2005) Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23:3502–3508PubMedCrossRef
5.
go back to reference Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRef Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRef
6.
go back to reference Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111PubMedCrossRef Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111PubMedCrossRef
7.
go back to reference Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27:3584–3590PubMedCrossRef Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27:3584–3590PubMedCrossRef
8.
go back to reference Ivy SP, Wick JY, Kaufman BM (2009) An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 6:569–579PubMedCrossRef Ivy SP, Wick JY, Kaufman BM (2009) An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 6:569–579PubMedCrossRef
9.
go back to reference Muramatsu M, Yamamoto S, Osawa T, Shibuya M (2010) Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res 70:8211–8221PubMedCrossRef Muramatsu M, Yamamoto S, Osawa T, Shibuya M (2010) Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res 70:8211–8221PubMedCrossRef
10.
go back to reference Welti JC, Gourlaouen M, Powles T, Kudahetti SC, Wilson P, Berney DM, Reynolds AR (2011) Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30:1183–1193PubMedCrossRef Welti JC, Gourlaouen M, Powles T, Kudahetti SC, Wilson P, Berney DM, Reynolds AR (2011) Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30:1183–1193PubMedCrossRef
11.
go back to reference Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121:1313–1328PubMedCrossRef Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121:1313–1328PubMedCrossRef
12.
go back to reference Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309PubMedCrossRef Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309PubMedCrossRef
13.
go back to reference Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1 + myeloid cells. Nat Biotechnol 25:911–920PubMedCrossRef Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1 + myeloid cells. Nat Biotechnol 25:911–920PubMedCrossRef
14.
go back to reference Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831PubMedCrossRef Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831PubMedCrossRef
15.
go back to reference Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. PNAS 106:6742–6747PubMedCrossRef Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. PNAS 106:6742–6747PubMedCrossRef
16.
go back to reference Kitadai Y, Sasaki T, Kuwai T, Nakamura T, Bucana CD, Fidler IJ (2006) Targeting the expression of platelet-derived growth factor receptor by reactive stroma inhibits growth and metastasis of human colon carcinoma. Am J Pathol 169:2054–2065PubMedCrossRef Kitadai Y, Sasaki T, Kuwai T, Nakamura T, Bucana CD, Fidler IJ (2006) Targeting the expression of platelet-derived growth factor receptor by reactive stroma inhibits growth and metastasis of human colon carcinoma. Am J Pathol 169:2054–2065PubMedCrossRef
17.
go back to reference Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signaling in the pro-angiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5(1):e19PubMedCrossRef Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signaling in the pro-angiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5(1):e19PubMedCrossRef
18.
go back to reference Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J, Ferrara N (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34PubMedCrossRef Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J, Ferrara N (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34PubMedCrossRef
19.
go back to reference Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X et al (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69:369–378PubMedCrossRef Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X et al (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69:369–378PubMedCrossRef
20.
go back to reference Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR et al (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65:4389–4400PubMedCrossRef Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR et al (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65:4389–4400PubMedCrossRef
21.
go back to reference Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, Sproat G, Swann R, Gray N, Ryan A, Jürgensmeier JM, Womack C (2010) Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 16:3548–3561PubMedCrossRef Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, Sproat G, Swann R, Gray N, Ryan A, Jürgensmeier JM, Womack C (2010) Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 16:3548–3561PubMedCrossRef
22.
go back to reference Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCrossRef Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCrossRef
23.
go back to reference Brave SR, Ratcliffe K, Wilson Z, James NH, Ashton S, Wainwright A et al (2011) Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. Mol Cancer Ther 10:861–873PubMedCrossRef Brave SR, Ratcliffe K, Wilson Z, James NH, Ashton S, Wainwright A et al (2011) Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. Mol Cancer Ther 10:861–873PubMedCrossRef
24.
go back to reference Brown JL, Cao ZA, Pinzon-Ortiz M, Kendrew J, Reimer C, Wen S et al (2010) A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol Cancer Ther 9:145–156PubMedCrossRef Brown JL, Cao ZA, Pinzon-Ortiz M, Kendrew J, Reimer C, Wen S et al (2010) A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol Cancer Ther 9:145–156PubMedCrossRef
25.
go back to reference Bagri A, Berry L, Gunter B, Singh M, Kasman I, Damico LA et al (2010) Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy. Clin Cancer Res 16:3887–3900PubMedCrossRef Bagri A, Berry L, Gunter B, Singh M, Kasman I, Damico LA et al (2010) Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy. Clin Cancer Res 16:3887–3900PubMedCrossRef
26.
go back to reference Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475PubMedCrossRef Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475PubMedCrossRef
27.
go back to reference Bais C, Wu X, Yao J, Yang S, Crawford Y, McCutcheon K et al (2010) PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 141:166–177PubMedCrossRef Bais C, Wu X, Yao J, Yang S, Crawford Y, McCutcheon K et al (2010) PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 141:166–177PubMedCrossRef
28.
go back to reference Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295PubMed Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295PubMed
29.
go back to reference Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340PubMed Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340PubMed
30.
go back to reference Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526PubMedCrossRef Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526PubMedCrossRef
31.
go back to reference Nisancioglu MH, Betsholtz C, Genové G (2010) The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Res 70:5109–5115PubMedCrossRef Nisancioglu MH, Betsholtz C, Genové G (2010) The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Res 70:5109–5115PubMedCrossRef
Metadata
Title
Expression of stromal genes associated with the angiogenic response are not differentiated between human tumour xenografts with divergent vascular morphologies
Authors
Matthew Farren
Susie Weston
Helen Brown
Nicola Broadbent
Steve Powell
Robert Shaw
Neil R. Smith
Rachael Inglis
Alex Graham
Sue Ashton
Stephen R. Wedge
Simon T. Barry
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 4/2012
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-012-9280-2

Other articles of this Issue 4/2012

Angiogenesis 4/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine