Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2011

Open Access 01-12-2011 | Research

Expression of MICA, MICB and NKG2D in human leukemic myelomonocytic and cervical cancer cells

Authors: Benny Weiss-Steider, Isabel Soto-Cruz, Christian A Martinez-Campos, Jorge Flavio Mendoza-Rincon

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2011

Login to get access

Abstract

Background

Cancer cells are known to secrete the stress molecules MICA and MICB that activate cytotoxicity by lymphocytes and NK cells through their NKG2D receptor as a mechanism of immunological defense. This work was undertaken to evaluate if cancer cells can also express this receptor as a possible mechanisms of depletion of MIC molecules and thus interfere with their immune recognition.

Methods

Myelomonocytic leukemic (TPH-1 and U-937) and cervical cancer (CALO and INBL) cell lines were evaluated by Western Blot, ELISA, flow cytometry and immunocytochemistry to evaluate their capacity to express and secrete MICA and MICB and to be induced to proliferate by these molecules as well as to express their receptor NKG2D. Statistical analysis was performed by two-way ANOVA for time course analysis and Student's t-test for comparison between groups. Values were considered significantly different if p < 0.05.

Results

THP-1 and U-937 produce and secrete the stress MICA and MICB as shown by Western Blot of lysed cells and by ELISA of their conditioned media. By Western Blot and flow cytometry we found that these cells also express the receptor NKG2D. When THP-1 and U-937 were cultured with recombinant MICA and MICB they exhibited a dose dependent induction for their proliferation. CALO and INBL also produce MICA and MICB and were induced to proliferate by these stress molecules. By Western Blot, flow cytometry and immunocytochemistry we also found that these cells express NKG2D.

Conclusions

Our novel results that tumor cells can simultaneously secrete MIC molecules and express their receptor, and to be induced for proliferation by these stress molecules, and that tumor epithelial cells can also express the NKG2D receptor that was thought to be exclusive of NK and cytotoxic lymphocytes is discussed as a possible mechanism of immunological escape and of tumor growth induction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, Coligan JD: The NKG2D receptor: immunobiology and clinical implications. Immunol Res. 2008, 40: 18-34. 10.1007/s12026-007-0060-9.CrossRefPubMed Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, Coligan JD: The NKG2D receptor: immunobiology and clinical implications. Immunol Res. 2008, 40: 18-34. 10.1007/s12026-007-0060-9.CrossRefPubMed
2.
go back to reference Jonjic' S, Polic' B, Krmpotic' : The role of NKG2D in immunoevasion by tumors and viruses. Eur J Immunol. 2008, 38: 2927-68.CrossRef Jonjic' S, Polic' B, Krmpotic' : The role of NKG2D in immunoevasion by tumors and viruses. Eur J Immunol. 2008, 38: 2927-68.CrossRef
3.
go back to reference Wrobel P, Shojaei B, Schittek F, Gieseler B, Wollenberg H, Kalthoff D, Kabelitz D, Wesch D: Lysis of a broad range of epithelial tumour cells by human gammadelta T cells: involvement of NKG2D ligands and T-cell receptor-versus NKG2D-dependent recognition. Scand J Immunol. 2007, 66: 320-28. 10.1111/j.1365-3083.2007.01963.x.CrossRefPubMed Wrobel P, Shojaei B, Schittek F, Gieseler B, Wollenberg H, Kalthoff D, Kabelitz D, Wesch D: Lysis of a broad range of epithelial tumour cells by human gammadelta T cells: involvement of NKG2D ligands and T-cell receptor-versus NKG2D-dependent recognition. Scand J Immunol. 2007, 66: 320-28. 10.1111/j.1365-3083.2007.01963.x.CrossRefPubMed
4.
go back to reference Saez-Borderias A, Guma M, Angulo A, Vellosillo B, Pende D, Lopez-Botet M: Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol. 2006, 36: 3198-06. 10.1002/eji.200636682.CrossRefPubMed Saez-Borderias A, Guma M, Angulo A, Vellosillo B, Pende D, Lopez-Botet M: Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol. 2006, 36: 3198-06. 10.1002/eji.200636682.CrossRefPubMed
5.
go back to reference Mendoza-Rincon JF: Human MICA and MICB genes: their biological function and relevance to infection and cancer. Advances in Cancer Research at UNAM. Edited by: Mas-Oliva J, Ninomiya-Alarcon J, Garcia-Carranca A. 2007, Mexico City; Manual Moderno, 127-135. Mendoza-Rincon JF: Human MICA and MICB genes: their biological function and relevance to infection and cancer. Advances in Cancer Research at UNAM. Edited by: Mas-Oliva J, Ninomiya-Alarcon J, Garcia-Carranca A. 2007, Mexico City; Manual Moderno, 127-135.
6.
go back to reference Paschen A, Sucker A, Hill B, Moll I, Zapatka M, Nguyen XD, Sim GC, Gutmann I, Hassel J, Becker JC, Steinle A, Schadendorf D, Ugurel S: Differential clinical significance of individual NKG2D ligands in melanoma: soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin Cancer Res. 2009, 15: 5208-15. 10.1158/1078-0432.CCR-09-0886.CrossRefPubMed Paschen A, Sucker A, Hill B, Moll I, Zapatka M, Nguyen XD, Sim GC, Gutmann I, Hassel J, Becker JC, Steinle A, Schadendorf D, Ugurel S: Differential clinical significance of individual NKG2D ligands in melanoma: soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin Cancer Res. 2009, 15: 5208-15. 10.1158/1078-0432.CCR-09-0886.CrossRefPubMed
7.
go back to reference Unni AM, Bondar T, Medzhitov R: Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc Natl Acad Sci USA. 2008, 105: 1686-91. 10.1073/pnas.0701675105.PubMedCentralCrossRefPubMed Unni AM, Bondar T, Medzhitov R: Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc Natl Acad Sci USA. 2008, 105: 1686-91. 10.1073/pnas.0701675105.PubMedCentralCrossRefPubMed
8.
go back to reference Kato NJ, Tanaka J, Sugita T, Toubai Y, Miura M, Ibata Y, Syono Y, Ota S, Kondo T, Asaka M, Imamura M: Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia. 2007, 21: 2103-08. 10.1038/sj.leu.2404862.CrossRefPubMed Kato NJ, Tanaka J, Sugita T, Toubai Y, Miura M, Ibata Y, Syono Y, Ota S, Kondo T, Asaka M, Imamura M: Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia. 2007, 21: 2103-08. 10.1038/sj.leu.2404862.CrossRefPubMed
9.
go back to reference Chalupny NJ, Rein-Weston A, Dosch S, Cosman D: Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun. 2006, 346: 175-81. 10.1016/j.bbrc.2006.05.092.CrossRefPubMed Chalupny NJ, Rein-Weston A, Dosch S, Cosman D: Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun. 2006, 346: 175-81. 10.1016/j.bbrc.2006.05.092.CrossRefPubMed
10.
go back to reference Tosh K, Ravikumar M, Bell JT, Meisner S, Hill AV, Pitchappan R: Variation in MICA and MICB genes and enhanced susceptibility to paucibacillary leprosy in South India. Hum Mol Genet. 2006, 15: 2880-87. 10.1093/hmg/ddl229.CrossRefPubMed Tosh K, Ravikumar M, Bell JT, Meisner S, Hill AV, Pitchappan R: Variation in MICA and MICB genes and enhanced susceptibility to paucibacillary leprosy in South India. Hum Mol Genet. 2006, 15: 2880-87. 10.1093/hmg/ddl229.CrossRefPubMed
11.
go back to reference Santoni A, Zingoni A, Cerboni C, Gismongi A: Natural killer (NK) cells from killers to regulators: distinct features between peripheral blood and decidual NK cells. Am J Reprod Immunol. 2007, 58: 280-88. 10.1111/j.1600-0897.2007.00513.x.CrossRefPubMed Santoni A, Zingoni A, Cerboni C, Gismongi A: Natural killer (NK) cells from killers to regulators: distinct features between peripheral blood and decidual NK cells. Am J Reprod Immunol. 2007, 58: 280-88. 10.1111/j.1600-0897.2007.00513.x.CrossRefPubMed
12.
go back to reference Papazahariadou M, Athanasiadis GI, Papadopoulos E, Symeonidou I, Hatzistilianou M, Castellani ML, Bhattacharya K, Shanmugham LN, Conti P, Frydas S: Involvement of NK cells against tumors and parasites. Int J Biol Markers. 2007, 22: 144-53.PubMed Papazahariadou M, Athanasiadis GI, Papadopoulos E, Symeonidou I, Hatzistilianou M, Castellani ML, Bhattacharya K, Shanmugham LN, Conti P, Frydas S: Involvement of NK cells against tumors and parasites. Int J Biol Markers. 2007, 22: 144-53.PubMed
13.
go back to reference Salih HR, Goehlsdorf D, Steinle A: Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum Immunol. 2006, 67: 188-95. 10.1016/j.humimm.2006.02.008.CrossRefPubMed Salih HR, Goehlsdorf D, Steinle A: Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum Immunol. 2006, 67: 188-95. 10.1016/j.humimm.2006.02.008.CrossRefPubMed
14.
go back to reference Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J: Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer. 2006, 119: 2359-65. 10.1002/ijc.22186.CrossRefPubMed Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J: Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer. 2006, 119: 2359-65. 10.1002/ijc.22186.CrossRefPubMed
15.
go back to reference Salih HR, Holdenrieder S, Steinle A: Soluble NKG2D ligands: prevalence, release and functional impact. Front Biosci. 2008, 4A: 2041-45. Salih HR, Holdenrieder S, Steinle A: Soluble NKG2D ligands: prevalence, release and functional impact. Front Biosci. 2008, 4A: 2041-45.
16.
go back to reference Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR: Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother. 2006, 55: 1584-89. 10.1007/s00262-006-0167-1.CrossRefPubMed Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR: Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother. 2006, 55: 1584-89. 10.1007/s00262-006-0167-1.CrossRefPubMed
17.
go back to reference Rocha-Zavaleta L, Ambrosio JP, Mora-Garcia Mde L, Cruz-Talonia F, Hernandez-Montes J, Weiss-Steider B, Ortiz-Navarrete V, Monroy-Garcia A: Detection of antibodies against a human papillomavirus (HPV) type 16 peptide that differentiate high-risk from low-risk HPV-associated low-grade squamous intraepithelial lesions. J Gen Virol. 2004, 85: 2643-50. 10.1099/vir.0.80077-0.CrossRefPubMed Rocha-Zavaleta L, Ambrosio JP, Mora-Garcia Mde L, Cruz-Talonia F, Hernandez-Montes J, Weiss-Steider B, Ortiz-Navarrete V, Monroy-Garcia A: Detection of antibodies against a human papillomavirus (HPV) type 16 peptide that differentiate high-risk from low-risk HPV-associated low-grade squamous intraepithelial lesions. J Gen Virol. 2004, 85: 2643-50. 10.1099/vir.0.80077-0.CrossRefPubMed
18.
go back to reference Monroy-Garcia A, Weiss-Steider B, Hernandez-Montes J, Ortiz-Navarrete VF, Banuelos-Panuco A, Acosta-Araujo A, Diaz-Quinonez A, Lopez-Graniel CM, Herbert G, Granados J, deLeo C, Silvia-Lopez RM, Mora-García ML: Identification of two homologous antigenic peptides derived from L1 HPV-16 and 18 proteins specific for the HLA-B*3901 allele. Arch Virol. 2002, 147: 1933-42. 10.1007/s00705-002-0854-y.CrossRefPubMed Monroy-Garcia A, Weiss-Steider B, Hernandez-Montes J, Ortiz-Navarrete VF, Banuelos-Panuco A, Acosta-Araujo A, Diaz-Quinonez A, Lopez-Graniel CM, Herbert G, Granados J, deLeo C, Silvia-Lopez RM, Mora-García ML: Identification of two homologous antigenic peptides derived from L1 HPV-16 and 18 proteins specific for the HLA-B*3901 allele. Arch Virol. 2002, 147: 1933-42. 10.1007/s00705-002-0854-y.CrossRefPubMed
19.
go back to reference Paggi A, Prevosto C, Zancolli M, Canevalli P, Musso A, Zocchi MR: NKG2D and Natural Cytotoxicity Receptors Are Involved in Natural Killer Cell Interaction with Self-Antigen Presenting Cells and Stromal Cells. Ann N Y Acad Sci. 2007, 1109: 47-57. 10.1196/annals.1398.007.CrossRef Paggi A, Prevosto C, Zancolli M, Canevalli P, Musso A, Zocchi MR: NKG2D and Natural Cytotoxicity Receptors Are Involved in Natural Killer Cell Interaction with Self-Antigen Presenting Cells and Stromal Cells. Ann N Y Acad Sci. 2007, 1109: 47-57. 10.1196/annals.1398.007.CrossRef
20.
21.
go back to reference Sundstrom Y, Nilsson C, Karre K, Troye-Blomberg M, Berg L: The expression of human natural killer cell receptors in early life. Scand J Immunol. 2007, 266: 335-44. 10.1111/j.1365-3083.2007.01980.x.CrossRef Sundstrom Y, Nilsson C, Karre K, Troye-Blomberg M, Berg L: The expression of human natural killer cell receptors in early life. Scand J Immunol. 2007, 266: 335-44. 10.1111/j.1365-3083.2007.01980.x.CrossRef
22.
go back to reference Park SW, Bae JH, Kim SD, Son YO, Kim JY, Park HJ, Lee CH, Park DY, Kim JY, Lee MK, Cheng BS, Kim SH, Kang CD: Comparison of level of NKG2D ligands between normal and tumor tissue using multiplex RT-PCR. Cancer Invest. 2007, 25: 299-07. 10.1080/07357900701208824.CrossRefPubMed Park SW, Bae JH, Kim SD, Son YO, Kim JY, Park HJ, Lee CH, Park DY, Kim JY, Lee MK, Cheng BS, Kim SH, Kang CD: Comparison of level of NKG2D ligands between normal and tumor tissue using multiplex RT-PCR. Cancer Invest. 2007, 25: 299-07. 10.1080/07357900701208824.CrossRefPubMed
Metadata
Title
Expression of MICA, MICB and NKG2D in human leukemic myelomonocytic and cervical cancer cells
Authors
Benny Weiss-Steider
Isabel Soto-Cruz
Christian A Martinez-Campos
Jorge Flavio Mendoza-Rincon
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2011
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-30-37

Other articles of this Issue 1/2011

Journal of Experimental & Clinical Cancer Research 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine