Skip to main content
Top
Published in: Osteoporosis International 11/2012

01-11-2012 | Original Article

Expression of endothelial nitric oxide synthase protein is not necessary for mechanical strain-induced nitric oxide production by cultured osteoblasts

Authors: V. Das-Gupta, R. A. Williamson, A. A. Pitsillides

Published in: Osteoporosis International | Issue 11/2012

Login to get access

Abstract

Summary

Regulation of nitric oxide (NO) production is considered essential in mechanical load-related osteogenesis. We examined whether osteoblast endothelial NO synthase (eNOS)-derived NO production was regulated by HSP90. We found that HSP90 is essential for strain-related NO release but appears to be independent of eNOS in cultured osteoblasts.

Introduction

NO is a key regulator of bone mass, and its production by bone cells is regarded as essential in mechanical strain-related osteogenesis. We sought to identify whether bone cell NO production relied upon eNOS, considered to be the predominant NOS isoform in bone, and whether this was regulated by an HSP90-dependent mechanism.

Methods

Using primary rat long bone-derived osteoblasts, the ROS 17/2.8 cell line and primary mouse osteoblasts, derived from wild-type and eNOS-deficient (eNOS−/−) mice, we examined by immunoblotting the expression of eNOS using a range of well-characterised antibodies and extraction methods, measured NOS activity by monitoring the conversion of radiolabelled l-arginine to citrulline and examined the production of NO by bone cells subjected to mechanical strain application under various conditions.

Results

Our studies have revealed that eNOS protein and activity were both undetectable in osteoblast-like cells, that mechanical strain-induced NO production was retained in bone cells from eNOS-deficient mice, but that this strain-related induction of NO production was, however, dependent upon HSP90.

Conclusions

Together, our studies indicate that HSP90 activity is essential for strain-related NO release by cultured osteoblasts and that this is highly likely to be achieved by an eNOS-independent mechanism.
Literature
1.
go back to reference Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107:321–327CrossRefPubMed Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107:321–327CrossRefPubMed
2.
go back to reference Turner CH, Takano Y, Owan I, Murrell GA (1996) Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol 270:E634–E639PubMed Turner CH, Takano Y, Owan I, Murrell GA (1996) Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol 270:E634–E639PubMed
3.
go back to reference Fox SW, Chambers TJ, Chow JW (1996) Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol 270:E955–E960PubMed Fox SW, Chambers TJ, Chow JW (1996) Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol 270:E955–E960PubMed
4.
go back to reference Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14:1123–1131CrossRefPubMed Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14:1123–1131CrossRefPubMed
5.
go back to reference Pitsillides AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 9:1614–1622PubMed Pitsillides AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 9:1614–1622PubMed
6.
go back to reference van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103:255–261CrossRef van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103:255–261CrossRef
7.
go back to reference Loveridge N, Fletcher S, Power J, Caballero-Alias AM, Das-Gupta V, Rushton N, Parker M, Reeve J, Pitsillides AA (2002) Patterns of osteocytic endothelial nitric oxide synthase expression in the femoral neck cortex: differences between cases of intracapsular hip fracture and controls. Bone 30:866–871CrossRefPubMed Loveridge N, Fletcher S, Power J, Caballero-Alias AM, Das-Gupta V, Rushton N, Parker M, Reeve J, Pitsillides AA (2002) Patterns of osteocytic endothelial nitric oxide synthase expression in the femoral neck cortex: differences between cases of intracapsular hip fracture and controls. Bone 30:866–871CrossRefPubMed
8.
go back to reference Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D’Angelo DD, Lynch KR, Peach MJ (1992) Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267:15274–15276PubMed Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D’Angelo DD, Lynch KR, Peach MJ (1992) Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267:15274–15276PubMed
9.
go back to reference Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276:17625–17628CrossRefPubMed Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276:17625–17628CrossRefPubMed
10.
go back to reference Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano P, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443:285–289CrossRefPubMed Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano P, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443:285–289CrossRefPubMed
11.
go back to reference Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601CrossRefPubMed Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601CrossRefPubMed
12.
go back to reference Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615CrossRefPubMed Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615CrossRefPubMed
13.
go back to reference Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824CrossRefPubMed Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824CrossRefPubMed
14.
go back to reference Tang Y, Scheef EA, Gurel Z, Sorenson CM, Jefcoate CR, Sheibani N (2010) CYP1B1 and endothelial nitric oxide synthase combine to sustain proangiogenic functions of endothelial cells under hyperoxic stress. Am J Physiol Cell Physiol 298:C665–C678CrossRefPubMed Tang Y, Scheef EA, Gurel Z, Sorenson CM, Jefcoate CR, Sheibani N (2010) CYP1B1 and endothelial nitric oxide synthase combine to sustain proangiogenic functions of endothelial cells under hyperoxic stress. Am J Physiol Cell Physiol 298:C665–C678CrossRefPubMed
15.
go back to reference Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103:5379–5384CrossRefPubMed Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103:5379–5384CrossRefPubMed
16.
go back to reference Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC, Shah V (2001) Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem 276:14249–14256PubMed Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC, Shah V (2001) Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem 276:14249–14256PubMed
17.
go back to reference Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242CrossRefPubMed Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242CrossRefPubMed
18.
go back to reference MacIntyre I, Zaidi M, Alam AS, Datta HK, Moonga BS, Lidbury PS, Hecker M, Vane JR (1991) Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Natl Acad Sci U S A 88:2936–2940CrossRefPubMed MacIntyre I, Zaidi M, Alam AS, Datta HK, Moonga BS, Lidbury PS, Hecker M, Vane JR (1991) Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Natl Acad Sci U S A 88:2936–2940CrossRefPubMed
19.
go back to reference Pitsillides AA, Das-Gupta V, Simon D, Rawlinson SC (2003) Methods for analyzing bone cell responses to mechanical loading using in vitro monolayer and organ culture models. Methods Mol Med 80:399–422PubMed Pitsillides AA, Das-Gupta V, Simon D, Rawlinson SC (2003) Methods for analyzing bone cell responses to mechanical loading using in vitro monolayer and organ culture models. Methods Mol Med 80:399–422PubMed
20.
go back to reference Piper PW (2001) The Hsp90 chaperone as a promising drug target. Curr Opin Investig Drugs 2:1606–1610PubMed Piper PW (2001) The Hsp90 chaperone as a promising drug target. Curr Opin Investig Drugs 2:1606–1610PubMed
21.
go back to reference Dodds RA, Ali N, Pead MJ, Lanyon LE (1993) Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J Bone Miner Res 8:261–267CrossRefPubMed Dodds RA, Ali N, Pead MJ, Lanyon LE (1993) Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J Bone Miner Res 8:261–267CrossRefPubMed
22.
go back to reference Fairchild TA, Fulton D, Fontana JT, Gratton JP, McCabe TJ, Sessa WC (2001) Acidic hydrolysis as a mechanism for the cleavage of the Glu(298)–>Asp variant of human endothelial nitric-oxide synthase. J Biol Chem 276:26674–26679CrossRefPubMed Fairchild TA, Fulton D, Fontana JT, Gratton JP, McCabe TJ, Sessa WC (2001) Acidic hydrolysis as a mechanism for the cleavage of the Glu(298)–>Asp variant of human endothelial nitric-oxide synthase. J Biol Chem 276:26674–26679CrossRefPubMed
23.
go back to reference Solomon KR, Danciu TE, Adolphson LD, Hecht LE, Hauschka PV (2000) Caveolin-enriched membrane signaling complexes in human and murine osteoblasts. J Bone Miner Res 15:2380–2390CrossRefPubMed Solomon KR, Danciu TE, Adolphson LD, Hecht LE, Hauschka PV (2000) Caveolin-enriched membrane signaling complexes in human and murine osteoblasts. J Bone Miner Res 15:2380–2390CrossRefPubMed
24.
go back to reference Knowles RG, Salter M (1998) Measurement of NOS activity by conversion of radiolabeled arginine to citrulline using ion-exchange separation. Methods Mol Biol 100:67–73PubMed Knowles RG, Salter M (1998) Measurement of NOS activity by conversion of radiolabeled arginine to citrulline using ion-exchange separation. Methods Mol Biol 100:67–73PubMed
25.
go back to reference Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V, MacIntyre I (2000) The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun 274:477–481CrossRefPubMed Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V, MacIntyre I (2000) The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun 274:477–481CrossRefPubMed
26.
go back to reference Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275:22268–22272CrossRefPubMed Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275:22268–22272CrossRefPubMed
27.
go back to reference Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272:25437–25440CrossRefPubMed Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272:25437–25440CrossRefPubMed
28.
go back to reference Michel JB, Feron O, Sase K, Prabhakar P, Michel T (1997) Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 272:25907–25912CrossRefPubMed Michel JB, Feron O, Sase K, Prabhakar P, Michel T (1997) Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 272:25907–25912CrossRefPubMed
29.
go back to reference Hukkanen MV, Platts LA, Fernandez De Marticorena I, O’Shaughnessy M, MacIntyre I, Polak JM (1999) Developmental regulation of nitric oxide synthase expression in rat skeletal bone. J Bone Miner Res 14:868–877CrossRefPubMed Hukkanen MV, Platts LA, Fernandez De Marticorena I, O’Shaughnessy M, MacIntyre I, Polak JM (1999) Developmental regulation of nitric oxide synthase expression in rat skeletal bone. J Bone Miner Res 14:868–877CrossRefPubMed
30.
go back to reference Corbett SA, Hukkanen M, Batten J, McCarthy ID, Polak JM, Hughes SP (1999) Nitric oxide in fracture repair. Differential localisation, expression and activity of nitric oxide synthases. J Bone Joint Surg Br 81:531–537CrossRefPubMed Corbett SA, Hukkanen M, Batten J, McCarthy ID, Polak JM, Hughes SP (1999) Nitric oxide in fracture repair. Differential localisation, expression and activity of nitric oxide synthases. J Bone Joint Surg Br 81:531–537CrossRefPubMed
31.
go back to reference MacPherson H, Noble BS, Ralston SH (1999) Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells. Bone 24:179–185CrossRefPubMed MacPherson H, Noble BS, Ralston SH (1999) Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells. Bone 24:179–185CrossRefPubMed
32.
go back to reference Grabowski PS, Macpherson H, Ralston SH (1996) Nitric oxide production in cells derived from the human joint. Br J Rheumatol 35:207–212CrossRefPubMed Grabowski PS, Macpherson H, Ralston SH (1996) Nitric oxide production in cells derived from the human joint. Br J Rheumatol 35:207–212CrossRefPubMed
33.
go back to reference Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009) Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296:E139–E146CrossRefPubMed Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009) Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296:E139–E146CrossRefPubMed
34.
go back to reference Hukkanen M, Hughes FJ, Buttery LD, Gross SS, Evans TJ, Seddon S, Riveros-Moreno V, Macintyre I, Polak JM (1995) Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology 136:5445–5453CrossRefPubMed Hukkanen M, Hughes FJ, Buttery LD, Gross SS, Evans TJ, Seddon S, Riveros-Moreno V, Macintyre I, Polak JM (1995) Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology 136:5445–5453CrossRefPubMed
35.
go back to reference O’Shaughnessy MC, Polak JM, Afzal F, Hukkanen MV, Huang P, MacIntyre I, Buttery LD (2000) Nitric oxide mediates 17beta-estradiol-stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun 277:604–610CrossRefPubMed O’Shaughnessy MC, Polak JM, Afzal F, Hukkanen MV, Huang P, MacIntyre I, Buttery LD (2000) Nitric oxide mediates 17beta-estradiol-stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun 277:604–610CrossRefPubMed
36.
go back to reference Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH (1997) Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res 12:1108–1115CrossRefPubMed Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH (1997) Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res 12:1108–1115CrossRefPubMed
37.
go back to reference Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419CrossRefPubMed Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419CrossRefPubMed
38.
go back to reference Rawlinson SC, McKay IJ, Ghuman M, Wellmann C, Ryan P, Prajaneh S, Zaman G, Hughes FJ, Kingsmill VJ (2009) Adult rat bones maintain distinct regionalized expression of markers associated with their development. PLoS One 4:e8358CrossRefPubMed Rawlinson SC, McKay IJ, Ghuman M, Wellmann C, Ryan P, Prajaneh S, Zaman G, Hughes FJ, Kingsmill VJ (2009) Adult rat bones maintain distinct regionalized expression of markers associated with their development. PLoS One 4:e8358CrossRefPubMed
39.
go back to reference McAllister TN, Frangos JA (1999) Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 14:930–936CrossRefPubMed McAllister TN, Frangos JA (1999) Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 14:930–936CrossRefPubMed
40.
go back to reference Miyamoto T, Petrus MJ, Dubin AE, Patapoutian A (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369CrossRefPubMed Miyamoto T, Petrus MJ, Dubin AE, Patapoutian A (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369CrossRefPubMed
41.
go back to reference Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275:7757–7763CrossRefPubMed Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275:7757–7763CrossRefPubMed
42.
go back to reference Meyer DJ (1995) Enzymatic/non-enzymatic formation of nitric oxide. Nat Med 1:1103–1104PubMed Meyer DJ (1995) Enzymatic/non-enzymatic formation of nitric oxide. Nat Med 1:1103–1104PubMed
43.
go back to reference Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732PubMed Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732PubMed
44.
go back to reference Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788CrossRefPubMed Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788CrossRefPubMed
45.
go back to reference Rawlinson SC, Murray DH, Mosley JR, Wright CD, Bredl JC, Saxon LK, Loveridge N, Leterrier C, Constantin P, Farquharson C, Pitsillides AA (2009) Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading. Bone 45:357–366CrossRefPubMed Rawlinson SC, Murray DH, Mosley JR, Wright CD, Bredl JC, Saxon LK, Loveridge N, Leterrier C, Constantin P, Farquharson C, Pitsillides AA (2009) Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading. Bone 45:357–366CrossRefPubMed
46.
go back to reference Yoshida A (1966) Glucose 6-phosphate dehydrogenase of human erythrocytes. I. Purification and characterization of normal (B+) enzyme. J Biol Chem 241:4966–4976PubMed Yoshida A (1966) Glucose 6-phosphate dehydrogenase of human erythrocytes. I. Purification and characterization of normal (B+) enzyme. J Biol Chem 241:4966–4976PubMed
47.
go back to reference Kunnel JG, Igarashi K, Gilbert JL, Stern PH (2004) Bone anabolic responses to mechanical load in vitro involve COX-2 and constitutive NOS. Connect Tissue Res 45:40–49CrossRefPubMed Kunnel JG, Igarashi K, Gilbert JL, Stern PH (2004) Bone anabolic responses to mechanical load in vitro involve COX-2 and constitutive NOS. Connect Tissue Res 45:40–49CrossRefPubMed
48.
go back to reference Bergula AP, Haidekker MA, Huang W, Stevens HY, Frangos JA (2004) Venous ligation-mediated bone adaptation is NOS 3 dependent. Bone 34:562–569CrossRefPubMed Bergula AP, Haidekker MA, Huang W, Stevens HY, Frangos JA (2004) Venous ligation-mediated bone adaptation is NOS 3 dependent. Bone 34:562–569CrossRefPubMed
49.
go back to reference Klein-Nulend J, Helfrich MH, Sterck JG, MacPherson H, Joldersma M, Ralston SH, Semeins CM, Burger EH (1998) Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 250:108–114CrossRefPubMed Klein-Nulend J, Helfrich MH, Sterck JG, MacPherson H, Joldersma M, Ralston SH, Semeins CM, Burger EH (1998) Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 250:108–114CrossRefPubMed
50.
go back to reference Stravopodis DJ, Margaritis LH, Voutsinas GE (2007) Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex. Curr Med Chem 14:3122–3138CrossRefPubMed Stravopodis DJ, Margaritis LH, Voutsinas GE (2007) Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex. Curr Med Chem 14:3122–3138CrossRefPubMed
51.
go back to reference Compton SA, Elmore LW, Haydu K, Jackson-Cook CK, Holt SE (2006) Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell Biol 26:1452–1462CrossRefPubMed Compton SA, Elmore LW, Haydu K, Jackson-Cook CK, Holt SE (2006) Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell Biol 26:1452–1462CrossRefPubMed
52.
go back to reference Miao RQ, Fontana J, Fulton D, Lin MI, Harrison KD, Sessa WC (2008) Dominant-negative Hsp90 reduces VEGF-stimulated nitric oxide release and migration in endothelial cells. Arterioscler Thromb Vasc Biol 28:105–111CrossRefPubMed Miao RQ, Fontana J, Fulton D, Lin MI, Harrison KD, Sessa WC (2008) Dominant-negative Hsp90 reduces VEGF-stimulated nitric oxide release and migration in endothelial cells. Arterioscler Thromb Vasc Biol 28:105–111CrossRefPubMed
53.
go back to reference van’t Hof RJ, Macphee J, Libouban H, Helfrich MH, Ralston SH (2004) Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 145:5068–5074CrossRef van’t Hof RJ, Macphee J, Libouban H, Helfrich MH, Ralston SH (2004) Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 145:5068–5074CrossRef
54.
go back to reference Sabanai K, Tsutsui M, Sakai A, Hirasawa H, Tanaka S, Nakamura E, Tanimoto A, Sasaguri Y, Ito M, Shimokawa H, Nakamura T, Yanagihara N (2008) Genetic disruption of all NO synthase isoforms enhances BMD and bone turnover in mice in vivo: involvement of the renin-angiotensin system. J Bone Miner Res 23:633–643CrossRefPubMed Sabanai K, Tsutsui M, Sakai A, Hirasawa H, Tanaka S, Nakamura E, Tanimoto A, Sasaguri Y, Ito M, Shimokawa H, Nakamura T, Yanagihara N (2008) Genetic disruption of all NO synthase isoforms enhances BMD and bone turnover in mice in vivo: involvement of the renin-angiotensin system. J Bone Miner Res 23:633–643CrossRefPubMed
55.
go back to reference Aguirre J, Buttery L, O’Shaughnessy M, Afzal F, Fernandez de Marticorena I, Hukkanen M, Huang P, MacIntyre I, Polak J (2001) Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am J Pathol 158:247–257CrossRefPubMed Aguirre J, Buttery L, O’Shaughnessy M, Afzal F, Fernandez de Marticorena I, Hukkanen M, Huang P, MacIntyre I, Polak J (2001) Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am J Pathol 158:247–257CrossRefPubMed
56.
go back to reference Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FA, Puzzolo D, Maggi A (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144:1098–1107CrossRefPubMed Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FA, Puzzolo D, Maggi A (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144:1098–1107CrossRefPubMed
57.
go back to reference Caballero-Alias AM, Loveridge N, Lyon A, Das-Gupta V, Pitsillides A, Reeve J (2004) NOS isoforms in adult human osteocytes: multiple pathways of NO regulation? Calcif Tissue Int 75:78–84CrossRefPubMed Caballero-Alias AM, Loveridge N, Lyon A, Das-Gupta V, Pitsillides A, Reeve J (2004) NOS isoforms in adult human osteocytes: multiple pathways of NO regulation? Calcif Tissue Int 75:78–84CrossRefPubMed
58.
go back to reference Cho K, Demissie S, Dupuis J, Cupples LA, Kathiresan S, Beck TJ, Karasik D, Kiel DP (2008) Polymorphisms in the endothelial nitric oxide synthase gene and bone density/ultrasound and geometry in humans. Bone 42:53–60CrossRefPubMed Cho K, Demissie S, Dupuis J, Cupples LA, Kathiresan S, Beck TJ, Karasik D, Kiel DP (2008) Polymorphisms in the endothelial nitric oxide synthase gene and bone density/ultrasound and geometry in humans. Bone 42:53–60CrossRefPubMed
59.
go back to reference Riancho JA, Zarrabeitia MT, Fernandez-Luna JL, Gonzalez-Macias J (1995) Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 107:87–92CrossRefPubMed Riancho JA, Zarrabeitia MT, Fernandez-Luna JL, Gonzalez-Macias J (1995) Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 107:87–92CrossRefPubMed
60.
go back to reference Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernandez-Luna JL, Gonzalez-Macias J (1995) Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res 10:439–446CrossRefPubMed Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernandez-Luna JL, Gonzalez-Macias J (1995) Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res 10:439–446CrossRefPubMed
61.
go back to reference Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, Watanabe K, Ikeda K, Nakamura T (2002) Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 17:1015–1025CrossRefPubMed Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, Watanabe K, Ikeda K, Nakamura T (2002) Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 17:1015–1025CrossRefPubMed
Metadata
Title
Expression of endothelial nitric oxide synthase protein is not necessary for mechanical strain-induced nitric oxide production by cultured osteoblasts
Authors
V. Das-Gupta
R. A. Williamson
A. A. Pitsillides
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 11/2012
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-012-1957-2

Other articles of this Issue 11/2012

Osteoporosis International 11/2012 Go to the issue