Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Research

Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and its roles in activated microglia in vivo and in vitro

Authors: Lijuan Yang, Enci Mary Kan, Jia Lu, Chunyun Wu, Eng-Ang Ling

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

Background

We reported previously that amoeboid microglial cells in the postnatal rat brain expressed 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) both in vivo and in vitro; however, the functional role of CNPase in microglia has remained uncertain. This study extended the investigation to determine CNPase expression in activated microglia derived from cell culture and animal models of brain injury with the objective to clarify its putative functions.

Methods

Three-day-old Wistar rats were given an intraperitoneal injection of lipopolysaccharide to induce microglial activation, and the rats were killed at different time points. Along with this, primary cultured microglial cells were subjected to lipopolysaccharide treatment, and expression of CNPase was analyzed by real-time reverse transcription PCR and immunofluorescence. Additionally, siRNA transfection was employed to downregulate CNPase in BV-2 cells. Following this, inducible nitric oxide synthase, IL-1β and TNF-α were determined at mRNA and protein levels. Reactive oxygen species and nitric oxide were also assessed by flow cytometry and colorimetric assay, respectively. In parallel to this, CNPase expression in activated microglia was also investigated in adult rats subjected to fluid percussion injury as well as middle cerebral artery occlusion.

Results

In vivo, CNPase immunofluorescence in activated microglia was markedly enhanced after lipopolysaccharide treatment. A similar feature was observed in the rat brain after fluid percussion injury and middle cerebral artery occlusion. In vitro, CNPase protein and mRNA expression was increased in primary microglia with lipopolysaccharide stimulation. Remarkably, inducible nitric oxide synthase, IL-1β, TNF-α, reactive oxygen species and nitric oxide were significantly upregulated in activated BV-2 cells with CNPase knockdown. siRNA knockdown of CNPase increased microglia migration; on the other hand, microglial cells appeared to be arrested at G1 phase.

Conclusions

The present results have provided the first morphological and molecular evidence that CNPase expression is increased in activated microglia. CNPase knockdown resulted in increased expression of various inflammatory mediators. It is concluded that CNPase may play an important role as a putative anti-inflammatory gene both in normal and injured brain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Muller HW, Clapshaw PA, Seifert W: Two molecular forms of the isolated brain enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. FEBS Lett. 1981, 131: 37-40. 10.1016/0014-5793(81)80882-4.CrossRefPubMed Muller HW, Clapshaw PA, Seifert W: Two molecular forms of the isolated brain enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. FEBS Lett. 1981, 131: 37-40. 10.1016/0014-5793(81)80882-4.CrossRefPubMed
2.
go back to reference Monoh K, Kurihara T, Sakimura K, Takahashi Y: Structure of mouse 2′,3′-cyclic-nucleotide 3′-phosphodiesterase gene. Biochem Biophys Res Commun. 1989, 165: 1213-1220. 10.1016/0006-291X(89)92731-9.CrossRefPubMed Monoh K, Kurihara T, Sakimura K, Takahashi Y: Structure of mouse 2′,3′-cyclic-nucleotide 3′-phosphodiesterase gene. Biochem Biophys Res Commun. 1989, 165: 1213-1220. 10.1016/0006-291X(89)92731-9.CrossRefPubMed
3.
go back to reference O’Neill RC, Minuk J, Cox ME, Braun PE, Gravel M: CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides. J Neurosci Res. 1997, 50: 248-257. 10.1002/(SICI)1097-4547(19971015)50:2<248::AID-JNR13>3.0.CO;2-4.CrossRefPubMed O’Neill RC, Minuk J, Cox ME, Braun PE, Gravel M: CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides. J Neurosci Res. 1997, 50: 248-257. 10.1002/(SICI)1097-4547(19971015)50:2<248::AID-JNR13>3.0.CO;2-4.CrossRefPubMed
4.
go back to reference Gravel M, DeAngelis D, Braun PE: Molecular cloning and characterization of rat brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform 2. J Neurosci Res. 1994, 38: 243-247. 10.1002/jnr.490380302.CrossRefPubMed Gravel M, DeAngelis D, Braun PE: Molecular cloning and characterization of rat brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform 2. J Neurosci Res. 1994, 38: 243-247. 10.1002/jnr.490380302.CrossRefPubMed
5.
go back to reference Kurihara T, Monoh K, Sakimura K, Takahashi Y: Alternative splicing of mouse brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase mRNA. Biochem Biophys Res Commun. 1990, 170: 1074-1081. 10.1016/0006-291X(90)90502-E.CrossRefPubMed Kurihara T, Monoh K, Sakimura K, Takahashi Y: Alternative splicing of mouse brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase mRNA. Biochem Biophys Res Commun. 1990, 170: 1074-1081. 10.1016/0006-291X(90)90502-E.CrossRefPubMed
6.
go back to reference McFerran B, Burgoyne R: 2′,3′-Cyclic nucleotide 3′-phosphodiesterase is associated with mitochondria in diverse adrenal cell types. J Cell Sci. 1997, 110: 2979-2985.PubMed McFerran B, Burgoyne R: 2′,3′-Cyclic nucleotide 3′-phosphodiesterase is associated with mitochondria in diverse adrenal cell types. J Cell Sci. 1997, 110: 2979-2985.PubMed
7.
go back to reference Brdiczka D, Beutner G, Ruck A, Dolder M, Wallimann T: The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors. 1998, 8: 235-242. 10.1002/biof.5520080311.CrossRefPubMed Brdiczka D, Beutner G, Ruck A, Dolder M, Wallimann T: The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors. 1998, 8: 235-242. 10.1002/biof.5520080311.CrossRefPubMed
8.
go back to reference Halestrap AP, Brenner C: The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 2003, 10: 1507-1525. 10.2174/0929867033457278.CrossRefPubMed Halestrap AP, Brenner C: The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 2003, 10: 1507-1525. 10.2174/0929867033457278.CrossRefPubMed
9.
go back to reference Wu CY, Lu J, Cao Q, Guo CH, Gao Q, Ling EA: Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the amoeboid microglial cells in the developing rat brain. Neuroscience. 2006, 142: 333-341. 10.1016/j.neuroscience.2006.06.030.CrossRefPubMed Wu CY, Lu J, Cao Q, Guo CH, Gao Q, Ling EA: Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the amoeboid microglial cells in the developing rat brain. Neuroscience. 2006, 142: 333-341. 10.1016/j.neuroscience.2006.06.030.CrossRefPubMed
10.
go back to reference Cao Q, Ding P, Lu J, Dheen ST, Moochhala S, Ling EA: 2′,3′-Cyclic nucleotide 3′-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord. J Neurosci Res. 2007, 85: 116-130. 10.1002/jnr.21092.CrossRefPubMed Cao Q, Ding P, Lu J, Dheen ST, Moochhala S, Ling EA: 2′,3′-Cyclic nucleotide 3′-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord. J Neurosci Res. 2007, 85: 116-130. 10.1002/jnr.21092.CrossRefPubMed
11.
go back to reference Galvita A, Grachev D, Azarashvili T, Baburina Y, Krestinina O, Stricker R, Reiser G: The brain-specific protein, p42(IP4) (ADAP 1) is localized in mitochondria and involved in regulation of mitochondrial Ca2+. J Neurochem. 2009, 109: 1701-1713. 10.1111/j.1471-4159.2009.06089.x.CrossRefPubMed Galvita A, Grachev D, Azarashvili T, Baburina Y, Krestinina O, Stricker R, Reiser G: The brain-specific protein, p42(IP4) (ADAP 1) is localized in mitochondria and involved in regulation of mitochondrial Ca2+. J Neurochem. 2009, 109: 1701-1713. 10.1111/j.1471-4159.2009.06089.x.CrossRefPubMed
12.
go back to reference Lee J, Gravel M, Zhang R, Thibault P, Braun PE: Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol. 2005, 170: 661-673. 10.1083/jcb.200411047.PubMedCentralCrossRefPubMed Lee J, Gravel M, Zhang R, Thibault P, Braun PE: Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol. 2005, 170: 661-673. 10.1083/jcb.200411047.PubMedCentralCrossRefPubMed
13.
go back to reference Dreiling CE, Schilling RJ, Reitz RC: 2′,3′-cyclic nucleotide 3′-phosphohydrolase in rat liver mitochondrial membranes. Biochim Biophys Acta. 1981, 640: 114-120. 10.1016/0005-2736(81)90537-X.CrossRefPubMed Dreiling CE, Schilling RJ, Reitz RC: 2′,3′-cyclic nucleotide 3′-phosphohydrolase in rat liver mitochondrial membranes. Biochim Biophys Acta. 1981, 640: 114-120. 10.1016/0005-2736(81)90537-X.CrossRefPubMed
14.
go back to reference Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, Evtodienko Y, Reiser G: Ca2 + −dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Am J Physiol Cell Physiol. 2009, 296: C1428-C1439. 10.1152/ajpcell.00006.2009.CrossRefPubMed Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, Evtodienko Y, Reiser G: Ca2 + −dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Am J Physiol Cell Physiol. 2009, 296: C1428-C1439. 10.1152/ajpcell.00006.2009.CrossRefPubMed
15.
go back to reference Halestrap AP: Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006, 34: 232-237. 10.1042/BST20060232.CrossRefPubMed Halestrap AP: Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006, 34: 232-237. 10.1042/BST20060232.CrossRefPubMed
16.
go back to reference Dheen ST, Kaur C, Ling EA: Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007, 14: 1189-1197. 10.2174/092986707780597961.CrossRefPubMed Dheen ST, Kaur C, Ling EA: Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007, 14: 1189-1197. 10.2174/092986707780597961.CrossRefPubMed
17.
go back to reference Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C: The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002, 202: 13-23. 10.1016/S0022-510X(02)00207-1.CrossRefPubMed Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C: The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002, 202: 13-23. 10.1016/S0022-510X(02)00207-1.CrossRefPubMed
18.
go back to reference Kim YS, Joh TH: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med. 2006, 38: 333-347. 10.1038/emm.2006.40.CrossRefPubMed Kim YS, Joh TH: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med. 2006, 38: 333-347. 10.1038/emm.2006.40.CrossRefPubMed
19.
go back to reference Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P: Imaging microglial activation in Huntington’s disease. Brain Res Bull. 2007, 72: 148-151. 10.1016/j.brainresbull.2006.10.029.CrossRefPubMed Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P: Imaging microglial activation in Huntington’s disease. Brain Res Bull. 2007, 72: 148-151. 10.1016/j.brainresbull.2006.10.029.CrossRefPubMed
20.
go back to reference Colton CA, Gilbert DL: Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987, 223: 284-288. 10.1016/0014-5793(87)80305-8.CrossRefPubMed Colton CA, Gilbert DL: Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987, 223: 284-288. 10.1016/0014-5793(87)80305-8.CrossRefPubMed
21.
go back to reference Dheen ST, Jun Y, Yan Z, Tay SS, Ling EA: Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia. 2005, 50: 21-31. 10.1002/glia.20153.CrossRefPubMed Dheen ST, Jun Y, Yan Z, Tay SS, Ling EA: Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia. 2005, 50: 21-31. 10.1002/glia.20153.CrossRefPubMed
22.
go back to reference Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S: The role of glial cells in Parkinson’s disease. Curr Opin Neurol. 2001, 14: 483-489. 10.1097/00019052-200108000-00009.CrossRefPubMed Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S: The role of glial cells in Parkinson’s disease. Curr Opin Neurol. 2001, 14: 483-489. 10.1097/00019052-200108000-00009.CrossRefPubMed
23.
go back to reference Wu YP, Ling EA: Transsynaptic changes of neurons and associated microglial reaction in the spinal cord of rats following middle cerebral artery occlusion. Neurosci Lett. 1998, 256: 41-44. 10.1016/S0304-3940(98)00750-2.CrossRefPubMed Wu YP, Ling EA: Transsynaptic changes of neurons and associated microglial reaction in the spinal cord of rats following middle cerebral artery occlusion. Neurosci Lett. 1998, 256: 41-44. 10.1016/S0304-3940(98)00750-2.CrossRefPubMed
24.
go back to reference Saura J, Tusell JM, Serratosa J: High-yield isolation of murine microglia by mild trypsinization. Glia. 2003, 44: 183-189. 10.1002/glia.10274.CrossRefPubMed Saura J, Tusell JM, Serratosa J: High-yield isolation of murine microglia by mild trypsinization. Glia. 2003, 44: 183-189. 10.1002/glia.10274.CrossRefPubMed
25.
go back to reference Nakamura Y, Si QS, Kataoka K: Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res. 1999, 35: 95-100. 10.1016/S0168-0102(99)00071-1.CrossRefPubMed Nakamura Y, Si QS, Kataoka K: Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res. 1999, 35: 95-100. 10.1016/S0168-0102(99)00071-1.CrossRefPubMed
26.
go back to reference Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C-T method. Nat Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.CrossRefPubMed Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C-T method. Nat Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.CrossRefPubMed
27.
go back to reference Sakamoto Y, Tanaka N, Ichimiya T, Kurihara T, Nakamura KT: Crystal structure of the catalytic fragment of human brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. J Mol Biol. 2005, 346: 789-800. 10.1016/j.jmb.2004.12.024.CrossRefPubMed Sakamoto Y, Tanaka N, Ichimiya T, Kurihara T, Nakamura KT: Crystal structure of the catalytic fragment of human brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. J Mol Biol. 2005, 346: 789-800. 10.1016/j.jmb.2004.12.024.CrossRefPubMed
28.
go back to reference Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B: Neocortical glial cell numbers in human brains. Neurobiol Aging. 2008, 29: 1754-1762. 10.1016/j.neurobiolaging.2007.04.013.CrossRefPubMed Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B: Neocortical glial cell numbers in human brains. Neurobiol Aging. 2008, 29: 1754-1762. 10.1016/j.neurobiolaging.2007.04.013.CrossRefPubMed
29.
go back to reference Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004, 101: 6062-6067. 10.1073/pnas.0400782101.PubMedCentralCrossRefPubMed Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004, 101: 6062-6067. 10.1073/pnas.0400782101.PubMedCentralCrossRefPubMed
30.
go back to reference Vogel US, Thompson RJ: Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem. 1988, 50: 1667-1677. 10.1111/j.1471-4159.1988.tb02461.x.CrossRefPubMed Vogel US, Thompson RJ: Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem. 1988, 50: 1667-1677. 10.1111/j.1471-4159.1988.tb02461.x.CrossRefPubMed
31.
go back to reference Sprinkle TJ, Agee JF, Tippins RB, Chamberlain CR, Faguet GB, De Vries GH: Monoclonal antibody production to human and bovine 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase): high-specificity recognition in whole brain acetone powders and conservation of sequence between CNP1 and CNP2. Brain Res. 1987, 426: 349-357. 10.1016/0006-8993(87)90888-2.CrossRefPubMed Sprinkle TJ, Agee JF, Tippins RB, Chamberlain CR, Faguet GB, De Vries GH: Monoclonal antibody production to human and bovine 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase): high-specificity recognition in whole brain acetone powders and conservation of sequence between CNP1 and CNP2. Brain Res. 1987, 426: 349-357. 10.1016/0006-8993(87)90888-2.CrossRefPubMed
32.
go back to reference Lee J, O’Neill RC, Park MW, Gravel M, Braun PE: Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells. Mol Cell Neurosci. 2006, 31: 446-462. 10.1016/j.mcn.2005.10.017.CrossRefPubMed Lee J, O’Neill RC, Park MW, Gravel M, Braun PE: Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells. Mol Cell Neurosci. 2006, 31: 446-462. 10.1016/j.mcn.2005.10.017.CrossRefPubMed
33.
go back to reference Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996, 19: 312-318. 10.1016/0166-2236(96)10049-7.CrossRefPubMed Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996, 19: 312-318. 10.1016/0166-2236(96)10049-7.CrossRefPubMed
34.
go back to reference Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006, 9: 268-275. 10.1038/nn1629.CrossRefPubMed Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006, 9: 268-275. 10.1038/nn1629.CrossRefPubMed
35.
go back to reference Urrutia PJ, Mena NP, Nunez MT: The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014, 5: 38-10.3389/fphar.2014.00038.PubMedCentralCrossRefPubMed Urrutia PJ, Mena NP, Nunez MT: The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014, 5: 38-10.3389/fphar.2014.00038.PubMedCentralCrossRefPubMed
36.
go back to reference Koizumi S, Ohsawa K, Inoue K, Kohsaka S: Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia. 2013, 61: 47-54. 10.1002/glia.22358.CrossRefPubMed Koizumi S, Ohsawa K, Inoue K, Kohsaka S: Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia. 2013, 61: 47-54. 10.1002/glia.22358.CrossRefPubMed
37.
go back to reference Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, Neusch C, Kirchhoff F: NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia. 2010, 58: 1133-1144. 10.1002/glia.20993.CrossRefPubMed Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, Neusch C, Kirchhoff F: NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia. 2010, 58: 1133-1144. 10.1002/glia.20993.CrossRefPubMed
38.
go back to reference Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF: The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007, 48: 751-762. 10.1194/jlr.R600021-JLR200.CrossRefPubMed Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF: The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007, 48: 751-762. 10.1194/jlr.R600021-JLR200.CrossRefPubMed
39.
go back to reference Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006, 281: 21362-21368. 10.1074/jbc.M600504200.CrossRefPubMed Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006, 281: 21362-21368. 10.1074/jbc.M600504200.CrossRefPubMed
40.
go back to reference Ohshima H, Bartsch H: Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994, 305: 253-264. 10.1016/0027-5107(94)90245-3.CrossRefPubMed Ohshima H, Bartsch H: Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994, 305: 253-264. 10.1016/0027-5107(94)90245-3.CrossRefPubMed
41.
go back to reference Fujii T, Iwane AH, Yanagida T, Namba K: Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature. 2010, 467: 724-728. 10.1038/nature09372.CrossRefPubMed Fujii T, Iwane AH, Yanagida T, Namba K: Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature. 2010, 467: 724-728. 10.1038/nature09372.CrossRefPubMed
42.
43.
go back to reference Baima ET, Guzova JA, Mathialagan S, Nagiec EE, Hardy MM, Song LR, Bonar SL, Weinberg RA, Selness SR, Woodard SS, Chrencik J, Hood WF, Schindler JF, Kishore N, Mbalaviele G: Novel insights into the cellular mechanisms of the anti-inflammatory effects of NF-kappaB essential modulator binding domain peptides. J Biol Chem. 2010, 285: 13498-13506. 10.1074/jbc.M109.099895.PubMedCentralCrossRefPubMed Baima ET, Guzova JA, Mathialagan S, Nagiec EE, Hardy MM, Song LR, Bonar SL, Weinberg RA, Selness SR, Woodard SS, Chrencik J, Hood WF, Schindler JF, Kishore N, Mbalaviele G: Novel insights into the cellular mechanisms of the anti-inflammatory effects of NF-kappaB essential modulator binding domain peptides. J Biol Chem. 2010, 285: 13498-13506. 10.1074/jbc.M109.099895.PubMedCentralCrossRefPubMed
44.
go back to reference Lee JW, Lee MS, Kim TH, Lee HJ, Hong SS, Noh YH, Hwang BY, Ro JS, Hong JT: Inhibitory effect of inflexinol on nitric oxide generation and iNOS expression via inhibition of NF-kappaB activation. Mediators Inflamm. 2007, 2007: 93148-10.1155/2007/93148.PubMedCentralCrossRefPubMed Lee JW, Lee MS, Kim TH, Lee HJ, Hong SS, Noh YH, Hwang BY, Ro JS, Hong JT: Inhibitory effect of inflexinol on nitric oxide generation and iNOS expression via inhibition of NF-kappaB activation. Mediators Inflamm. 2007, 2007: 93148-10.1155/2007/93148.PubMedCentralCrossRefPubMed
45.
go back to reference Dokic I, Hartmann C, Herold-Mende C, Regnier-Vigouroux A: Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia. 2012, 60: 1785-1800. 10.1002/glia.22397.CrossRefPubMed Dokic I, Hartmann C, Herold-Mende C, Regnier-Vigouroux A: Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia. 2012, 60: 1785-1800. 10.1002/glia.22397.CrossRefPubMed
46.
go back to reference Shen SC, Wu MS, Lin HY, Yang LY, Chen YH, Chen YC: Reactive oxygen species-dependent nitric oxide production in reciprocal interactions of glioma and microglial cells.J Cell Physiol 2014. doi: 10.1002/jcp.24659.. Shen SC, Wu MS, Lin HY, Yang LY, Chen YH, Chen YC: Reactive oxygen species-dependent nitric oxide production in reciprocal interactions of glioma and microglial cells.J Cell Physiol 2014. doi: 10.1002/jcp.24659..
47.
go back to reference Naik E, Dixit VM: Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011, 208: 417-420. 10.1084/jem.20110367.PubMedCentralCrossRefPubMed Naik E, Dixit VM: Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011, 208: 417-420. 10.1084/jem.20110367.PubMedCentralCrossRefPubMed
48.
go back to reference Tschopp J: Mitochondria: sovereign of inflammation?. Eur J Immunol. 2011, 41: 1196-1202. 10.1002/eji.201141436.CrossRefPubMed Tschopp J: Mitochondria: sovereign of inflammation?. Eur J Immunol. 2011, 41: 1196-1202. 10.1002/eji.201141436.CrossRefPubMed
49.
go back to reference Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007, 8: 57-69. 10.1038/nrn2038.CrossRefPubMed Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007, 8: 57-69. 10.1038/nrn2038.CrossRefPubMed
50.
go back to reference Brown GC, Bal-Price A: Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol. 2003, 27: 325-355. 10.1385/MN:27:3:325.CrossRefPubMed Brown GC, Bal-Price A: Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol. 2003, 27: 325-355. 10.1385/MN:27:3:325.CrossRefPubMed
51.
go back to reference Park GB, Bang SR, Lee HK, Kim D, Kim S, Kim JK, Kim YS, Hur DY: Ligation of CD47 induces G1 arrest in EBV-transformed B cells through ROS generation, p38 MAPK/JNK activation, and Tap73 upregulation. J Immunother. 2014, 37: 309-320. 10.1097/CJI.0000000000000042.CrossRefPubMed Park GB, Bang SR, Lee HK, Kim D, Kim S, Kim JK, Kim YS, Hur DY: Ligation of CD47 induces G1 arrest in EBV-transformed B cells through ROS generation, p38 MAPK/JNK activation, and Tap73 upregulation. J Immunother. 2014, 37: 309-320. 10.1097/CJI.0000000000000042.CrossRefPubMed
Metadata
Title
Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and its roles in activated microglia in vivo and in vitro
Authors
Lijuan Yang
Enci Mary Kan
Jia Lu
Chunyun Wu
Eng-Ang Ling
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-014-0148-9

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue