Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2014

Open Access 01-12-2014 | Research article

Expression levels of the hypothalamic AMPK gene determines the responsiveness of the rats to electroacupuncture-induced analgesia

Authors: Sun Kwang Kim, Boram Sun, Heera Yoon, Ji Hwan Lee, Giseog Lee, Sung-Hwa Sohn, Hyunseong Kim, Fu Shi Quan, Insop Shim, Joohun Ha, Byung-Il Min, Hyunsu Bae

Published in: BMC Complementary Medicine and Therapies | Issue 1/2014

Login to get access

Abstract

Background

Although electroacupuncture (EA) relieves various types of pain, individual differences in the sensitivity to EA analgesia have been reported, causing experimental and clinical difficulties. Our functional genomic study using cDNA microarray identified that 5’-AMP-activated protein kinase (AMPK), a well-known factor in the regulation of energy homeostasis, is the most highly expressed gene in the hypothalamus of the rats that were sensitive to EA analgesia (“responder”), as compared to the rats that were insensitive to EA analgesia (“non-responder”). In this study, we investigated the causal relationship between the hypothalamic AMPK and the individual variation in EA analgesia.

Methods

Sprague-Dawley (SD) rats were divided into the responder and the non-responder groups, based on EA-induced analgesic effects in the tail flick latency (TFL) test, which measures the latency of the tail flick response elicited by radiant heat applied to the tail. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to quantify the expression levels of AMPK mRNA in the hypothalamus of the responder and non-responder rats. Further, we examined whether viral manipulation of the AMPK expression in the hypothalamus modulates EA analgesia in rats.

Results

The real-time RT-PCR analysis showed that mRNA expression levels of AMPK in the hypothalamus of the responder rats are significantly higher than those of the non-responder rats, validating the previous microarray results. Microinjection of dominant negative (DN) AMPK adenovirus, which inhibits AMPK activity, into the rat hypothalamus significantly attenuates EA analgesia (p < 0.05), whereas wild type (WT) AMPK virus did not affect EA analgesia (p > 0.05).

Conclusions

The present results demonstrated that levels of AMPK gene expression in the rat hypothalamus determine the individual differences in the sensitivity to EA analgesia. Thus, our findings provide a clinically useful evidence for the application of acupuncture or EA for analgesia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cherkin DC, Sherman KJ, Deyo RA, Shekelle PG: A review of the evidence for the effectiveness, safety, and cost of acupuncture, massage therapy, and spinal manipulation for back pain. Ann Intern Med. 2003, 138 (11): 898-906.CrossRefPubMed Cherkin DC, Sherman KJ, Deyo RA, Shekelle PG: A review of the evidence for the effectiveness, safety, and cost of acupuncture, massage therapy, and spinal manipulation for back pain. Ann Intern Med. 2003, 138 (11): 898-906.CrossRefPubMed
2.
3.
go back to reference Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, Park DS, Na HS: Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol. 2005, 195 (2): 430-436.CrossRefPubMed Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, Park DS, Na HS: Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol. 2005, 195 (2): 430-436.CrossRefPubMed
4.
go back to reference Schliessbach J, van der Klift E, Arendt-Nielsen L, Curatolo M, Streitberger K: The effect of brief electrical and manual acupuncture stimulation on mechanical experimental pain. Pain Med. 2011, 12 (2): 268-275.CrossRefPubMed Schliessbach J, van der Klift E, Arendt-Nielsen L, Curatolo M, Streitberger K: The effect of brief electrical and manual acupuncture stimulation on mechanical experimental pain. Pain Med. 2011, 12 (2): 268-275.CrossRefPubMed
5.
go back to reference Han J: The neurochemical basis of pain relief by acupuncture. 1987, Beijing: Chinese Medical Science and Technology Press Han J: The neurochemical basis of pain relief by acupuncture. 1987, Beijing: Chinese Medical Science and Technology Press
6.
go back to reference Takeshige C, Sato T, Mera T, Hisamitsu T, Fang J: Descending pain inhibitory system involved in acupuncture analgesia. Brain Res Bull. 1992, 29 (5): 617-634.CrossRefPubMed Takeshige C, Sato T, Mera T, Hisamitsu T, Fang J: Descending pain inhibitory system involved in acupuncture analgesia. Brain Res Bull. 1992, 29 (5): 617-634.CrossRefPubMed
7.
go back to reference Zhang RX, Lao L, Wang L, Liu B, Wang X, Ren K, Berman BM: Involvement of opioid receptors in electroacupuncture-produced anti-hyperalgesia in rats with peripheral inflammation. Brain Res. 2004, 1020 (1–2): 12-17.CrossRefPubMed Zhang RX, Lao L, Wang L, Liu B, Wang X, Ren K, Berman BM: Involvement of opioid receptors in electroacupuncture-produced anti-hyperalgesia in rats with peripheral inflammation. Brain Res. 2004, 1020 (1–2): 12-17.CrossRefPubMed
8.
go back to reference Lee G, Rho S, Shin M, Hong M, Min B, Bae H: The association of cholecystokinin-A receptor expression with the responsiveness of electroacupuncture analgesic effects in rat. Neurosci Lett. 2002, 325 (1): 17-20.CrossRefPubMed Lee G, Rho S, Shin M, Hong M, Min B, Bae H: The association of cholecystokinin-A receptor expression with the responsiveness of electroacupuncture analgesic effects in rat. Neurosci Lett. 2002, 325 (1): 17-20.CrossRefPubMed
9.
go back to reference Takeshige C, Murai M, Tanaka M, Hachisu M: Parallel individual variations in effectiveness of acupuncture, morphine analgesia, and dorsal PAG-SPA and their abolition by D-phenylalanine. Adv Pain Res Ther. 1983, 5: 563-569. Takeshige C, Murai M, Tanaka M, Hachisu M: Parallel individual variations in effectiveness of acupuncture, morphine analgesia, and dorsal PAG-SPA and their abolition by D-phenylalanine. Adv Pain Res Ther. 1983, 5: 563-569.
10.
go back to reference Kim SK, Moon HJ, Park JH, Lee G, Shin MK, Hong MC, Bae H, Jin YH, Min BI: The maintenance of individual differences in the sensitivity of acute and neuropathic pain behaviors to electroacupuncture in rats. Brain Res Bull. 2007, 74 (5): 357-360.CrossRefPubMed Kim SK, Moon HJ, Park JH, Lee G, Shin MK, Hong MC, Bae H, Jin YH, Min BI: The maintenance of individual differences in the sensitivity of acute and neuropathic pain behaviors to electroacupuncture in rats. Brain Res Bull. 2007, 74 (5): 357-360.CrossRefPubMed
11.
go back to reference Sekido R, Ishimaru K, Sakita M: Differences of electroacupuncture-induced analgesic effect in normal and inflammatory conditions in rats. Am J Chin Med. 2003, 31 (6): 955-965.CrossRefPubMed Sekido R, Ishimaru K, Sakita M: Differences of electroacupuncture-induced analgesic effect in normal and inflammatory conditions in rats. Am J Chin Med. 2003, 31 (6): 955-965.CrossRefPubMed
12.
go back to reference Lee G, Rho S, Lee J, Min BI, Hong M, Bae H: Cloning of genes responsible for distinguishing between responder and non-responder to the acupuncture mediated analgesic effects. Experimental Biology 2001. 2001, Orlando: The FASEB journal, 1166- Lee G, Rho S, Lee J, Min BI, Hong M, Bae H: Cloning of genes responsible for distinguishing between responder and non-responder to the acupuncture mediated analgesic effects. Experimental Biology 2001. 2001, Orlando: The FASEB journal, 1166-
13.
go back to reference Costigan M, Griffin RS, Woolf C: Microarray analysis of the pain pathway. The Genetics of Pain. Edited by: Mogil JS. 2004, Seattle: IASP press, 65-84. Costigan M, Griffin RS, Woolf C: Microarray analysis of the pain pathway. The Genetics of Pain. Edited by: Mogil JS. 2004, Seattle: IASP press, 65-84.
14.
go back to reference Sur Y, Rho S, Lee G, Ko E, Hong M, Shin M, Min B, Bae H: Gene expression profile of the responder vs. the non-responder to the acupuncture mediated analgesic effects. Korean J Orient Physiol Pathol. 2003, 17: 633-642. Sur Y, Rho S, Lee G, Ko E, Hong M, Shin M, Min B, Bae H: Gene expression profile of the responder vs. the non-responder to the acupuncture mediated analgesic effects. Korean J Orient Physiol Pathol. 2003, 17: 633-642.
15.
go back to reference Kim SK, Park JY, Koo BH, Lee JH, Kim HS, Choi WK, Shim I, Lee H, Hong MC, Shin MK, Min BI, Bae H: Adenoviral gene transfer of acetylcholinesterase T subunit in the hypothalamus potentiates electroacupuncture analgesia in rats. Genes Brain Behav. 2009, 8 (2): 174-180.CrossRefPubMed Kim SK, Park JY, Koo BH, Lee JH, Kim HS, Choi WK, Shim I, Lee H, Hong MC, Shin MK, Min BI, Bae H: Adenoviral gene transfer of acetylcholinesterase T subunit in the hypothalamus potentiates electroacupuncture analgesia in rats. Genes Brain Behav. 2009, 8 (2): 174-180.CrossRefPubMed
16.
go back to reference Kim SJ, Chung ES, Lee JH, Lee CH, Kim SK, Lee HJ, Bae H: Electroacupuncture analgesia is improved by adenoviral gene transfer of dopamine beta-hydroxylase into the hypothalamus of rats. Korean J Physiol Pharmacol. 2013, 17 (6): 505-510.CrossRefPubMedPubMedCentral Kim SJ, Chung ES, Lee JH, Lee CH, Kim SK, Lee HJ, Bae H: Electroacupuncture analgesia is improved by adenoviral gene transfer of dopamine beta-hydroxylase into the hypothalamus of rats. Korean J Physiol Pharmacol. 2013, 17 (6): 505-510.CrossRefPubMedPubMedCentral
17.
go back to reference Yun H, Ha J: AMP-activated protein kinase modulators: a patent review (2006–2010). Expert Opin Ther Pat. 2011, 21 (7): 983-1005.CrossRefPubMed Yun H, Ha J: AMP-activated protein kinase modulators: a patent review (2006–2010). Expert Opin Ther Pat. 2011, 21 (7): 983-1005.CrossRefPubMed
18.
go back to reference Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, Lark A, Khoutorsky A, Johnson J, Peebles KA, Lepow T, Sonenberg N, Dussor G, Price TJ: Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain. 2011, 7: 70-CrossRefPubMedPubMedCentral Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, Lark A, Khoutorsky A, Johnson J, Peebles KA, Lepow T, Sonenberg N, Dussor G, Price TJ: Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain. 2011, 7: 70-CrossRefPubMedPubMedCentral
19.
go back to reference Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ: Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain. 2012, 8: 5-CrossRefPubMedPubMedCentral Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ: Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain. 2012, 8: 5-CrossRefPubMedPubMedCentral
20.
go back to reference Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983, 16 (2): 109-110.CrossRefPubMed Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983, 16 (2): 109-110.CrossRefPubMed
21.
go back to reference Ko ES, Kim SK, Kim JT, Lee G, Han JB, Rho SW, Hong MC, Bae H, Min BI: The difference in mRNA expressions of hypothalamic CCK and CCK-A and -B receptors between responder and non-responder rats to high frequency electroacupuncture analgesia. Peptides. 2006, 27 (7): 1841-1845.CrossRefPubMed Ko ES, Kim SK, Kim JT, Lee G, Han JB, Rho SW, Hong MC, Bae H, Min BI: The difference in mRNA expressions of hypothalamic CCK and CCK-A and -B receptors between responder and non-responder rats to high frequency electroacupuncture analgesia. Peptides. 2006, 27 (7): 1841-1845.CrossRefPubMed
22.
go back to reference Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000, 20 (18): 6704-6711.CrossRefPubMedPubMedCentral Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000, 20 (18): 6704-6711.CrossRefPubMedPubMedCentral
23.
go back to reference Kobayashi K, Oka K, Forte T, Ishida B, Teng B, Ishimura-Oka K, Nakamuta M, Chan L: Reversal of hypercholesterolemia in low density lipoprotein receptor knockout mice by adenovirus-mediated gene transfer of the very low density lipoprotein receptor. J Biol Chem. 1996, 271 (12): 6852-6860.CrossRefPubMed Kobayashi K, Oka K, Forte T, Ishida B, Teng B, Ishimura-Oka K, Nakamuta M, Chan L: Reversal of hypercholesterolemia in low density lipoprotein receptor knockout mice by adenovirus-mediated gene transfer of the very low density lipoprotein receptor. J Biol Chem. 1996, 271 (12): 6852-6860.CrossRefPubMed
24.
go back to reference Lee M, Hwang JT, Lee HJ, Jung SN, Kang I, Chi SG, Kim SS, Ha J: AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem. 2003, 278 (41): 39653-39661.CrossRefPubMed Lee M, Hwang JT, Lee HJ, Jung SN, Kang I, Chi SG, Kim SS, Ha J: AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem. 2003, 278 (41): 39653-39661.CrossRefPubMed
25.
go back to reference Paxinos G, Watson C: The rat brain in stereotaxic coordinates. 1998, San Diego: Academic Paxinos G, Watson C: The rat brain in stereotaxic coordinates. 1998, San Diego: Academic
26.
go back to reference Dyck JR, Gao G, Widmer J, Stapleton D, Fernandez CS, Kemp BE, Witters LA: Regulation of 5'-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. J Biol Chem. 1996, 271 (30): 17798-17803.CrossRefPubMed Dyck JR, Gao G, Widmer J, Stapleton D, Fernandez CS, Kemp BE, Witters LA: Regulation of 5'-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. J Biol Chem. 1996, 271 (30): 17798-17803.CrossRefPubMed
27.
go back to reference Mogil JS: The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A. 1999, 96 (14): 7744-7751.CrossRefPubMedPubMedCentral Mogil JS: The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A. 1999, 96 (14): 7744-7751.CrossRefPubMedPubMedCentral
29.
go back to reference Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koeppe RA, Stohler CS, Goldman D: COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003, 299 (5610): 1240-1243.CrossRefPubMed Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koeppe RA, Stohler CS, Goldman D: COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003, 299 (5610): 1240-1243.CrossRefPubMed
30.
go back to reference Ramamurthy S, Ronnett GV: Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol. 2006, 574 (Pt 1): 85-93.CrossRefPubMedPubMedCentral Ramamurthy S, Ronnett GV: Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol. 2006, 574 (Pt 1): 85-93.CrossRefPubMedPubMedCentral
31.
go back to reference Price TJ, Dussor G: AMPK: an emerging target for modification of injury-induced pain plasticity. Neurosci Lett. 2013, 557 Pt A: 9-18.CrossRefPubMed Price TJ, Dussor G: AMPK: an emerging target for modification of injury-induced pain plasticity. Neurosci Lett. 2013, 557 Pt A: 9-18.CrossRefPubMed
32.
go back to reference Russe OQ, Moser CV, Kynast KL, King TS, Stephan H, Geisslinger G, Niederberger E: Activation of the AMP-activated protein kinase reduces inflammatory nociception. J Pain. 2013, 14 (11): 1330-1340.CrossRefPubMed Russe OQ, Moser CV, Kynast KL, King TS, Stephan H, Geisslinger G, Niederberger E: Activation of the AMP-activated protein kinase reduces inflammatory nociception. J Pain. 2013, 14 (11): 1330-1340.CrossRefPubMed
33.
go back to reference Stark R, Ashley SE, Andrews ZB: AMPK and the neuroendocrine regulation of appetite and energy expenditure. Mol Cell Endocrinol. 2013, 366 (2): 215-223.CrossRefPubMed Stark R, Ashley SE, Andrews ZB: AMPK and the neuroendocrine regulation of appetite and energy expenditure. Mol Cell Endocrinol. 2013, 366 (2): 215-223.CrossRefPubMed
34.
go back to reference Li JJ, Zhou X, Yu LC: Involvement of neuropeptide Y and Y1 receptor in antinociception in the arcuate nucleus of hypothalamus, an immunohistochemical and pharmacological study in intact rats and rats with inflammation. Pain. 2005, 118 (1–2): 232-242.CrossRefPubMed Li JJ, Zhou X, Yu LC: Involvement of neuropeptide Y and Y1 receptor in antinociception in the arcuate nucleus of hypothalamus, an immunohistochemical and pharmacological study in intact rats and rats with inflammation. Pain. 2005, 118 (1–2): 232-242.CrossRefPubMed
35.
go back to reference Eshkevari L, Egan R, Phillips D, Tilan J, Carney E, Azzam N, Amri H, Mulroney SE: Acupuncture at ST36 prevents chronic stress-induced increases in neuropeptide Y in rat. Exp Biol Med. 2012, 237 (1): 18-23.CrossRef Eshkevari L, Egan R, Phillips D, Tilan J, Carney E, Azzam N, Amri H, Mulroney SE: Acupuncture at ST36 prevents chronic stress-induced increases in neuropeptide Y in rat. Exp Biol Med. 2012, 237 (1): 18-23.CrossRef
36.
go back to reference Lee JD, Jang MH, Kim EH, Kim CJ: Acupuncture decreases neuropeptide Y expression in the hypothalamus of rats with Streptozotocin-induced diabetes. Acupunct Electrother Res. 2004, 29 (1–2): 73-82.CrossRefPubMed Lee JD, Jang MH, Kim EH, Kim CJ: Acupuncture decreases neuropeptide Y expression in the hypothalamus of rats with Streptozotocin-induced diabetes. Acupunct Electrother Res. 2004, 29 (1–2): 73-82.CrossRefPubMed
37.
go back to reference Kim W, Kim SK, Min BI: Mechanisms of electroacupuncture-induced analgesia on neuropathic pain in animal model. eCAM. 2013, 2013: 436913-PubMedPubMedCentral Kim W, Kim SK, Min BI: Mechanisms of electroacupuncture-induced analgesia on neuropathic pain in animal model. eCAM. 2013, 2013: 436913-PubMedPubMedCentral
Metadata
Title
Expression levels of the hypothalamic AMPK gene determines the responsiveness of the rats to electroacupuncture-induced analgesia
Authors
Sun Kwang Kim
Boram Sun
Heera Yoon
Ji Hwan Lee
Giseog Lee
Sung-Hwa Sohn
Hyunseong Kim
Fu Shi Quan
Insop Shim
Joohun Ha
Byung-Il Min
Hyunsu Bae
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2014
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-14-211

Other articles of this Issue 1/2014

BMC Complementary Medicine and Therapies 1/2014 Go to the issue