Skip to main content
Top
Published in: Endocrine 3/2010

01-12-2010 | Original Article

Expression and somatic mutations of SDHAF2 (SDH5), a novel endocrine tumor suppressor gene in parathyroid tumors of primary hyperparathyroidism

Authors: Lee F. Starker, Alberto Delgado-Verdugo, Robert Udelsman, Peyman Björklund, Tobias Carling

Published in: Endocrine | Issue 3/2010

Login to get access

Abstract

To investigate the SDHAF2 gene and its effect on primary hyperparathyroidism. Parathyroid tumors causing primary hyperparathyroidism (pHPT) are one of the more common endocrine neoplasias. Loss of heterozygosity at chromosome 11q13 is the most common chromosomal aberration in parathyroid tumors occurring in about 40% of sporadic tumors. Only 15–19% display somatic mutations in the MEN1 gene, which suggest that this chromosomal region may harbor additional genes of importance in parathyroid tumor development. The SDHAF2 (formerly SDH5) gene is a recently identified neuroendocrine tumor suppressor gene at this locus, and inherited mutations of the SDHAF2 gene has been linked to familial paraganglioma. We demonstrate that the SDHAF2 gene is expressed in parathyroid tissue using RT-PCR. Because detection of inactivating mutations is the major criterion for validating a candidate tumor suppressor, we used automated sequencing of the coding region and intron/exon boundaries in 80 sporadic parathyroid adenomas from patients with pHPT. A known polymorphisms (A to G substitution; rs879647) was identified in 9/80 parathyroid tumors but no tumor-specific somatic mutational aberrations, such as nonsense, frameshift, or other inactivating mutations were identified. The SDHAF2 gene is expressed in parathyroid tissue. However, somatic mutations of the SDHAF2 tumor suppressor gene are unlikely to frequently contribute to parathyroid tumor development in sporadic pHPT.
Literature
1.
go back to reference T. Carling, Multiple endocrine neoplasia syndrome: genetic basis for clinical management. Curr. Opin. Oncol. 17, 7–12 (2005)CrossRefPubMed T. Carling, Multiple endocrine neoplasia syndrome: genetic basis for clinical management. Curr. Opin. Oncol. 17, 7–12 (2005)CrossRefPubMed
2.
go back to reference E. Lundgren, J. Rastad et al., Population-based health screening for primary hyperparathyroidism with serum calcium and parathyroid hormone values in menopausal women. Surgery 121, 287–294 (1997)CrossRefPubMed E. Lundgren, J. Rastad et al., Population-based health screening for primary hyperparathyroidism with serum calcium and parathyroid hormone values in menopausal women. Surgery 121, 287–294 (1997)CrossRefPubMed
3.
go back to reference S.C. Chandrasekharappa, S.C. Guru et al., Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997)CrossRefPubMed S.C. Chandrasekharappa, S.C. Guru et al., Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997)CrossRefPubMed
4.
go back to reference J.D.R.C. Carpten, A. Villablanca et al., HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat. Genet. 32, 676–680 (2002)CrossRefPubMed J.D.R.C. Carpten, A. Villablanca et al., HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat. Genet. 32, 676–680 (2002)CrossRefPubMed
5.
go back to reference A. Arnold, H.G. Kim, Clonal loss of one chromosome 11 in a parathyroid adenoma. J. Clin. Endocrinol. Metab. 69, 496–499 (1989)CrossRefPubMed A. Arnold, H.G. Kim, Clonal loss of one chromosome 11 in a parathyroid adenoma. J. Clin. Endocrinol. Metab. 69, 496–499 (1989)CrossRefPubMed
6.
go back to reference A. Arnold, H.G. Kim et al., Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in parathyroid adenoma. J. Clin. Invest. 83, 2034–2040 (1989)CrossRefPubMed A. Arnold, H.G. Kim et al., Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in parathyroid adenoma. J. Clin. Invest. 83, 2034–2040 (1989)CrossRefPubMed
7.
go back to reference C. Heppner, M.B. Kester et al., Somatic mutations of the MEN1 gene in parathyroid tumours. Nat. Genet. 16, 375–378 (1997)CrossRefPubMed C. Heppner, M.B. Kester et al., Somatic mutations of the MEN1 gene in parathyroid tumours. Nat. Genet. 16, 375–378 (1997)CrossRefPubMed
8.
go back to reference T. Carling, P. Correa et al., Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 83, 2960–2963 (1998)CrossRefPubMed T. Carling, P. Correa et al., Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 83, 2960–2963 (1998)CrossRefPubMed
9.
go back to reference F. Farnebo, B.-T. Teh, S. Kytölä et al., Alterations of the MEN1 gene in sporadic parathyroid tumors. J. Clin. Endocrinol. Metab. 83, 2627–2630 (1998)CrossRefPubMed F. Farnebo, B.-T. Teh, S. Kytölä et al., Alterations of the MEN1 gene in sporadic parathyroid tumors. J. Clin. Endocrinol. Metab. 83, 2627–2630 (1998)CrossRefPubMed
10.
go back to reference T. Carling, Molecular pathology of parathyroid tumors. Trends Endocrinol. Metab. 12, 53–58 (2001)CrossRefPubMed T. Carling, Molecular pathology of parathyroid tumors. Trends Endocrinol. Metab. 12, 53–58 (2001)CrossRefPubMed
11.
go back to reference H.X. Hao, O. Khalimonchuk et al., SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139–1142 (2009)CrossRefPubMed H.X. Hao, O. Khalimonchuk et al., SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139–1142 (2009)CrossRefPubMed
12.
go back to reference H.P. Neumann, B. Bausch et al., Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002)CrossRefPubMed H.P. Neumann, B. Bausch et al., Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002)CrossRefPubMed
13.
go back to reference B.E. Baysal, Clinical and molecular progress in hereditary paraganglioma. J. Med. Genet. 45, 689–694 (2008)CrossRefPubMed B.E. Baysal, Clinical and molecular progress in hereditary paraganglioma. J. Med. Genet. 45, 689–694 (2008)CrossRefPubMed
14.
go back to reference B.E. Baysal, R.E. Ferrell et al., Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000)CrossRefPubMed B.E. Baysal, R.E. Ferrell et al., Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000)CrossRefPubMed
15.
go back to reference J.P. Bayley, H.P. Kunst et al., SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 11, 366–372 (2010)CrossRefPubMed J.P. Bayley, H.P. Kunst et al., SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 11, 366–372 (2010)CrossRefPubMed
16.
go back to reference I.P. Tomlinson, N.A. Alam et al., Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002)CrossRefPubMed I.P. Tomlinson, N.A. Alam et al., Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002)CrossRefPubMed
17.
go back to reference H. Yan, D.W. Parsons et al., IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009)CrossRefPubMed H. Yan, D.W. Parsons et al., IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009)CrossRefPubMed
18.
go back to reference J. Costa-Guda, T. Tokura, S.I. Roth et al., Mitochondrial DNA mutations in oxyphilic and chief cell parathyroid adenomas. BMC Endocr. Disord. 7, 8 (2007)CrossRefPubMed J. Costa-Guda, T. Tokura, S.I. Roth et al., Mitochondrial DNA mutations in oxyphilic and chief cell parathyroid adenomas. BMC Endocr. Disord. 7, 8 (2007)CrossRefPubMed
19.
go back to reference J.J. Yeh, K.L. Lunetta et al., Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 19(16), 2060–2066 (2000)CrossRefPubMed J.J. Yeh, K.L. Lunetta et al., Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 19(16), 2060–2066 (2000)CrossRefPubMed
20.
go back to reference T. Carling, A. Kindmark et al., Vitamin D receptor genotypes in primary hyperparathyroidism. Nat. Med. 1, 1309–1311 (1995)CrossRefPubMed T. Carling, A. Kindmark et al., Vitamin D receptor genotypes in primary hyperparathyroidism. Nat. Med. 1, 1309–1311 (1995)CrossRefPubMed
21.
go back to reference T. Carling, J. Rastad et al., Reduced vitamin D receptor mRNA levels in parathyroid glands of primary and secondary hyperparathyroidism. J. Clin. Endocrinol. 85, 2000–2003 (2000)CrossRef T. Carling, J. Rastad et al., Reduced vitamin D receptor mRNA levels in parathyroid glands of primary and secondary hyperparathyroidism. J. Clin. Endocrinol. 85, 2000–2003 (2000)CrossRef
22.
go back to reference E.R. Fearon, C.V. Dang, Cancer genetics: tumor suppressor meets oncogene. Curr. Biol. 9, R62–R65 (1999)CrossRefPubMed E.R. Fearon, C.V. Dang, Cancer genetics: tumor suppressor meets oncogene. Curr. Biol. 9, R62–R65 (1999)CrossRefPubMed
Metadata
Title
Expression and somatic mutations of SDHAF2 (SDH5), a novel endocrine tumor suppressor gene in parathyroid tumors of primary hyperparathyroidism
Authors
Lee F. Starker
Alberto Delgado-Verdugo
Robert Udelsman
Peyman Björklund
Tobias Carling
Publication date
01-12-2010
Publisher
Springer US
Published in
Endocrine / Issue 3/2010
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-010-9399-0

Other articles of this Issue 3/2010

Endocrine 3/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine