Skip to main content
Top
Published in: Tumor Biology 6/2013

01-12-2013 | Research Article

Expression and significance of miRNA-21 and BTG2 in lung cancer

Authors: Qing Sun, Meng Hang, Xuedan Guo, Wenlong Shao, Guangqiao Zeng

Published in: Tumor Biology | Issue 6/2013

Login to get access

Abstract

This study investigates the expression of micro-ribonucleic acid-21 (miRNA-21) and B cell translocation gene 2 (BTG2) in lung cancer cells. We examined the impact of miRNA-21 on biological characteristics of lung cancer cells, such as growth, proliferation, apoptosis, and invasion. The expression of miRNA-21 and BTG2 protein in lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) was examined using quantitative reverse transcription-polymerase chain reaction and Western blot analysis, respectively. Subsequently, the regulatory role of miRNA-21 on BTG2 was explored by inhibiting miRNA-21 expression in 95-D cells using miRNA-21-antisense oligonucleotides (miRNA-21 ASO). The impact of miRNA-21 on the biological characteristics of 95-D cells was further studied using methylthiazol tetrazolium assays, flow cytometry, and Transwell invasion chamber assays. The impact of miRNA-21 on the expression of cyclin D1, caspase-3, and matrix metalloprotease-9 (MMP9) was also studied. miRNA-21 expression was significantly higher in lung cancer cell lines (A549, HCC827, NCI-H282, and 95-D) than that in normal human bronchial epithelial cells (HBE; p < 0.05). The pattern of BTG2 protein expression was exactly the opposite of miRNA-21 expression in lung cancer cells. BTG2 was highly expressed in HBE cells and was expressed at very low levels in lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D). High miRNA-21 expression may inhibit BTG2 protein expression, whereas the inhibition of miRNA-21 expression may promote BTG2 protein expression in 95-D cells. Cell viability and invasion of 95-D cells were significantly lower in the miRNA-21 ASO-transfected group than that in the control ASO-transfected group and untransfected group (p < 0.05). The number of apoptotic cells was significantly higher in the miRNA-21 ASO-transfected group than that in the control ASO-transfected and untransfected groups (p < 0.05). The expression level of cyclin D1 and MMP9 in 95-D cells was significantly lower in the miRNA-21 ASO-transfected group than in the control ASO-transfected and untransfected groups (p < 0.05). Meanwhile, caspase-3 expression was significantly higher in the miRNA-21 ASO-transfected group than that in the control ASO-transfected and untransfected groups (p < 0.05). miRNA-21 overexpression may inhibit the BTG2 gene in lung cancer cells. miRNA-21 may promote cell proliferation and invasion and inhibit cell apoptosis in 95-D cells.
Literature
1.
go back to reference Shimizu K, Okita R, Nakata M. Clinical significance of the tumor microenvironment in non-small cell lung cancer. Ann Transl Med. 2013;1(2):20. Shimizu K, Okita R, Nakata M. Clinical significance of the tumor microenvironment in non-small cell lung cancer. Ann Transl Med. 2013;1(2):20.
2.
go back to reference Liu J, Liu X, Cui F, Chen G, Guan Y, He J. The efficacy of the inhalation of an aerosolized Group A streptococcal preparation in the treatment of lung cancer. Chin J Cancer Res. 2012;24(4):346–52.PubMedCentralPubMedCrossRef Liu J, Liu X, Cui F, Chen G, Guan Y, He J. The efficacy of the inhalation of an aerosolized Group A streptococcal preparation in the treatment of lung cancer. Chin J Cancer Res. 2012;24(4):346–52.PubMedCentralPubMedCrossRef
3.
go back to reference Skinner HD, Komaki R. Proton radiotherapy in the treatment of lung cancer. Transl Cancer Res. 2012;1(4):264–70. Skinner HD, Komaki R. Proton radiotherapy in the treatment of lung cancer. Transl Cancer Res. 2012;1(4):264–70.
4.
go back to reference Quintavalle C, Condorelli G. Dulanermin in cancer therapy: still much to do. Transl Lung Cancer Res. 2012;1(2):158–9. Quintavalle C, Condorelli G. Dulanermin in cancer therapy: still much to do. Transl Lung Cancer Res. 2012;1(2):158–9.
5.
go back to reference Taenzer A, Alix-Panabières C, Wikman H, Pantel K. Circulating tumor-derived biomarkers in lung cancer. J Thorac Dis. 2012;4(5):448–9.PubMedCentralPubMed Taenzer A, Alix-Panabières C, Wikman H, Pantel K. Circulating tumor-derived biomarkers in lung cancer. J Thorac Dis. 2012;4(5):448–9.PubMedCentralPubMed
7.
go back to reference Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A. 2003;100(17):9779–84.PubMedCentralPubMedCrossRef Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A. 2003;100(17):9779–84.PubMedCentralPubMedCrossRef
9.
go back to reference Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A, Maugeri-Sacca M, et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 2013;32:1843–53 Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A, Maugeri-Sacca M, et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 2013;32:1843–53
10.
go back to reference Niu J, Shi Y, Tan G, Yang CH, Fan M, Pfeffer LM, et al. DNA damage induces NF-kappaB-dependent microRNA-21 upregulation and promotes breast cancer cell invasion. J Biol Chem 2012;287:21783–95 Niu J, Shi Y, Tan G, Yang CH, Fan M, Pfeffer LM, et al. DNA damage induces NF-kappaB-dependent microRNA-21 upregulation and promotes breast cancer cell invasion. J Biol Chem 2012;287:21783–95
11.
go back to reference Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep. 2012;27(4):1019–26.PubMedCentralPubMed Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep. 2012;27(4):1019–26.PubMedCentralPubMed
12.
go back to reference Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 2010;79(3–4):313–20.PubMedCrossRef Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 2010;79(3–4):313–20.PubMedCrossRef
13.
go back to reference Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411(11–12):846–52.PubMedCrossRef Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411(11–12):846–52.PubMedCrossRef
14.
go back to reference Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.PubMed Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.PubMed
15.
go back to reference Song G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH, et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology. 2010;51(5):1735–43.PubMedCentralPubMedCrossRef Song G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH, et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology. 2010;51(5):1735–43.PubMedCentralPubMedCrossRef
16.
go back to reference Yang CH, Yue J, Pfeffer SR, Handorf CR, Pfeffer LM. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem. 2011;286(45):39172–8.PubMedCentralPubMedCrossRef Yang CH, Yue J, Pfeffer SR, Handorf CR, Pfeffer LM. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem. 2011;286(45):39172–8.PubMedCentralPubMedCrossRef
17.
go back to reference Liu M, Wu H, Liu T, Li Y, Wang F, Wan H, et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009;19(7):828–37.PubMedCrossRef Liu M, Wu H, Liu T, Li Y, Wang F, Wan H, et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009;19(7):828–37.PubMedCrossRef
18.
go back to reference Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet. 1996;14(4):482–6.PubMedCrossRef Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet. 1996;14(4):482–6.PubMedCrossRef
19.
go back to reference Winkler GS. The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol. 2010;222(1):66–72.PubMedCrossRef Winkler GS. The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol. 2010;222(1):66–72.PubMedCrossRef
20.
go back to reference Duriez C, Moyret-Lalle C, Falette N, El-Ghissassi F, Puisieux A. BTG2, its family and its tutor. Bull Cancer. 2004;91(7–8):E242–53.PubMed Duriez C, Moyret-Lalle C, Falette N, El-Ghissassi F, Puisieux A. BTG2, its family and its tutor. Bull Cancer. 2004;91(7–8):E242–53.PubMed
21.
go back to reference Lim IK. TIS21 (/BTG2/PC3) as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. J Cancer Res Clin Oncol. 2006;132(7):417–26.PubMedCrossRef Lim IK. TIS21 (/BTG2/PC3) as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. J Cancer Res Clin Oncol. 2006;132(7):417–26.PubMedCrossRef
22.
go back to reference Zhang Z, Chen C, Wang G, Yang Z, San J, Zheng J, et al. Aberrant expression of the p53-inducible antiproliferative gene BTG2 in hepatocellular carcinoma is associated with overexpression of the cell cycle-related proteins. Cell Biochem Biophys. 2011;61(1):83–91.PubMedCrossRef Zhang Z, Chen C, Wang G, Yang Z, San J, Zheng J, et al. Aberrant expression of the p53-inducible antiproliferative gene BTG2 in hepatocellular carcinoma is associated with overexpression of the cell cycle-related proteins. Cell Biochem Biophys. 2011;61(1):83–91.PubMedCrossRef
23.
go back to reference Horvilleur E, Bauer M, Goldschneider D, Mergui X, de la Motte A, Benard J, et al. p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Res. 2008;36(13):4222–32.PubMedCentralPubMedCrossRef Horvilleur E, Bauer M, Goldschneider D, Mergui X, de la Motte A, Benard J, et al. p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Res. 2008;36(13):4222–32.PubMedCentralPubMedCrossRef
24.
go back to reference Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006;20(2):236–52.PubMedCentralPubMedCrossRef Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006;20(2):236–52.PubMedCentralPubMedCrossRef
25.
go back to reference Tirone F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol. 2001;187(2):155–65.PubMedCrossRef Tirone F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol. 2001;187(2):155–65.PubMedCrossRef
26.
go back to reference Takahashi F, Chiba N, Tajima K, Hayashida T, Shimada T, Takahashi M, et al. Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene. 2011;30(27):3084–95.PubMedCrossRef Takahashi F, Chiba N, Tajima K, Hayashida T, Shimada T, Takahashi M, et al. Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene. 2011;30(27):3084–95.PubMedCrossRef
27.
go back to reference Zhang L, Huang H, Wu K, Wang M, Wu B. Impact of BTG2 expression on proliferation and invasion of gastric cancer cells in vitro. Mol Biol Rep. 2010;37(6):2579–86.PubMedCrossRef Zhang L, Huang H, Wu K, Wang M, Wu B. Impact of BTG2 expression on proliferation and invasion of gastric cancer cells in vitro. Mol Biol Rep. 2010;37(6):2579–86.PubMedCrossRef
28.
go back to reference Wei S, Hao C, Li X, Zhao H, Chen J, and Zhou Q. Effects of BTG2 on proliferation inhibition and anti-invasion in human lung cancer cells. Tumour Biol 2012;33:1223–30 Wei S, Hao C, Li X, Zhao H, Chen J, and Zhou Q. Effects of BTG2 on proliferation inhibition and anti-invasion in human lung cancer cells. Tumour Biol 2012;33:1223–30
30.
go back to reference Nair VS, Maeda LS, Ioannidis JP. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst. 2012;104(7):528–40.PubMedCentralPubMedCrossRef Nair VS, Maeda LS, Ioannidis JP. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst. 2012;104(7):528–40.PubMedCentralPubMedCrossRef
32.
go back to reference Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.PubMedCrossRef Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.PubMedCrossRef
33.
go back to reference Ribas J, Ni X, Castanares M, Liu MM, Esopi D, Yegnasubramanian S, et al. A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res 2012;40:6821–33 Ribas J, Ni X, Castanares M, Liu MM, Esopi D, Yegnasubramanian S, et al. A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res 2012;40:6821–33
34.
go back to reference Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, et al. miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol. 2008;378(3):492–504.PubMedCrossRef Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, et al. miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol. 2008;378(3):492–504.PubMedCrossRef
35.
go back to reference Reis ST, Pontes-Junior J, Antunesnes AA, Dall Oglio MF, Dip N, Passerotti CC, et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 2012;12(1):14.PubMedCentralPubMedCrossRef Reis ST, Pontes-Junior J, Antunesnes AA, Dall Oglio MF, Dip N, Passerotti CC, et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 2012;12(1):14.PubMedCentralPubMedCrossRef
36.
go back to reference Nagao Y, Hisaoka M, Matsuyama A, Kanemitsu S, Hamada T, Fukuyama T, et al. Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod Pathol. 2012;25(1):112–21.PubMedCrossRef Nagao Y, Hisaoka M, Matsuyama A, Kanemitsu S, Hamada T, Fukuyama T, et al. Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod Pathol. 2012;25(1):112–21.PubMedCrossRef
37.
go back to reference Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem. 2010;285(26):20281–90.PubMedCentralPubMedCrossRef Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem. 2010;285(26):20281–90.PubMedCentralPubMedCrossRef
38.
go back to reference Li Y, Li W, Yang Y, Lu Y, He C, Hu G, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res. 2009;1286:13–8.PubMedCrossRef Li Y, Li W, Yang Y, Lu Y, He C, Hu G, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res. 2009;1286:13–8.PubMedCrossRef
39.
go back to reference Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–72.PubMedCrossRef Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–72.PubMedCrossRef
40.
go back to reference Kwak HJ, Kim YJ, Chun KR, Woo YM, Park SJ, Jeong JA, et al. Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene. 2011;30(21):2433–42.PubMedCrossRef Kwak HJ, Kim YJ, Chun KR, Woo YM, Park SJ, Jeong JA, et al. Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene. 2011;30(21):2433–42.PubMedCrossRef
41.
go back to reference Meyer A, Cirpus P, Ott C, Schlecker R, Zahringer U, Heinz E. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Delta4-fatty acyl group desaturase. Biochemistry. 2003;42(32):9779–88.PubMedCrossRef Meyer A, Cirpus P, Ott C, Schlecker R, Zahringer U, Heinz E. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Delta4-fatty acyl group desaturase. Biochemistry. 2003;42(32):9779–88.PubMedCrossRef
42.
go back to reference Hagan S, Al-Mulla F, Mallon E, Oien K, Ferrier R, Gusterson B, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res. 2005;11(20):7392–7.PubMedCrossRef Hagan S, Al-Mulla F, Mallon E, Oien K, Ferrier R, Gusterson B, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res. 2005;11(20):7392–7.PubMedCrossRef
43.
go back to reference Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A, et al. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res. 2006;66(14):7075–82.PubMedCrossRef Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A, et al. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res. 2006;66(14):7075–82.PubMedCrossRef
44.
go back to reference Lim SK, Choi YW, Lim IK, and Park TJ. BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis 2012; 29:901–13 Lim SK, Choi YW, Lim IK, and Park TJ. BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis 2012; 29:901–13
Metadata
Title
Expression and significance of miRNA-21 and BTG2 in lung cancer
Authors
Qing Sun
Meng Hang
Xuedan Guo
Wenlong Shao
Guangqiao Zeng
Publication date
01-12-2013
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2013
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-0992-8

Other articles of this Issue 6/2013

Tumor Biology 6/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine