Skip to main content
Top
Published in: BMC Medical Genetics 1/2015

Open Access 01-12-2015 | Research article

Expression analysis of the osteoarthritis genetic susceptibility locus mapping to an intron of the MCF2L gene and marked by the polymorphism rs11842874

Authors: Colin Shepherd, Andrew J. Skelton, Michael D. Rushton, Louise N. Reynard, John Loughlin

Published in: BMC Medical Genetics | Issue 1/2015

Login to get access

Abstract

Background

Osteoarthritis (OA) is a painful, debilitating disease characterised by loss of articular cartilage with concurrent changes in other tissues of the synovial joint. Genetic association studies have shown that a number of common variants increase the risk of developing OA. Investigating their activity can uncover novel causal pathways and potentially highlight new treatment targets. One of the reported OA association signals is marked by the single nucleotide polymorphism (SNP) rs11842874 at chromosome 13q34. rs11842874 is positioned within a small linkage disequilibrium (LD) block within intron 4 of MCF2L, a gene encoding guanine-nucleotide exchange factor DBS. There are no non-synonymous SNPs that correlate with this association signal and we therefore set out to assess whether its effect on OA susceptibility is mediated by alteration of MCF2L expression.

Methods

Nucleic acid was extracted from cartilage, synovial membrane or infrapatellar fat pad tissues from OA patients. Expression of MCF2L was measured by quantitative PCR and RNA-sequencing whilst the presence of DBS was studied using immunohistochemistry. The functional effect of SNPs within the 13q34 locus was assessed using public databases and in vitro using luciferase reporter analysis.

Results

MCF2L gene and protein expression are detectable in joint tissues, with quantitative differences in the expression of the gene and in the transcript isoforms expressed between the tissues tested. There is an expression quantitative trait locus (eQTL) operating within synovial membrane tissue, with possession of the risk-conferring A allele of rs11842874 correlating with increased MCF2L expression. SNPs within the rs11842874 LD block reside within transcriptional regulatory elements and their direct analysis reveals that several show quantitative differences in regulatory activity at the allelic level.

Conclusions

MCF2L is subject to a cis-acting eQTL in synovial membrane that correlates with the OA association signal. This signal contains several functional SNPs that could account for the susceptibility and which therefore merit further investigation. As far as we are aware, this is the first example of an OA susceptibility locus operating as an eQTL in synovial membrane tissue but not in cartilage.
Appendix
Available only for authorised users
Literature
2.
go back to reference Reynard LN, Loughlin J. Insights from human genetic studies into the pathways involved in osteoarthritis. Nature Rev Rheumatol. 2013;9:573–83.CrossRef Reynard LN, Loughlin J. Insights from human genetic studies into the pathways involved in osteoarthritis. Nature Rev Rheumatol. 2013;9:573–83.CrossRef
3.
go back to reference Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nature Genet. 2007;39:529–33.CrossRefPubMed Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nature Genet. 2007;39:529–33.CrossRefPubMed
4.
go back to reference Egli R, Southam L, Wilkins JM, Lorenzen I, Pombo-Suarez M, Gonzalez A, et al. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheumatol. 2009;60:2055–64.CrossRef Egli R, Southam L, Wilkins JM, Lorenzen I, Pombo-Suarez M, Gonzalez A, et al. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheumatol. 2009;60:2055–64.CrossRef
5.
go back to reference Bos SD, Bovée JV, Duijnisveld BJ, Raine EV, van Dalen WJ, Ramos YF, et al. Increased type II deiodinase protein in OA-affected cartilage and allelic imbalance of OA risk polymorphism rs225014 at DIO2 in human OA joint tissues. Ann Rheum Dis. 2012;71:1254–8.CrossRefPubMed Bos SD, Bovée JV, Duijnisveld BJ, Raine EV, van Dalen WJ, Ramos YF, et al. Increased type II deiodinase protein in OA-affected cartilage and allelic imbalance of OA risk polymorphism rs225014 at DIO2 in human OA joint tissues. Ann Rheum Dis. 2012;71:1254–8.CrossRefPubMed
6.
go back to reference Styrkarsdottir U, Thorleifsson G, Helgadottir HT, Bomer N, Metrustry S, Bierma-Zeinstra S, et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nature Genet. 2014;46:498–502.CrossRefPubMed Styrkarsdottir U, Thorleifsson G, Helgadottir HT, Bomer N, Metrustry S, Bierma-Zeinstra S, et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nature Genet. 2014;46:498–502.CrossRefPubMed
7.
go back to reference Day-Williams AG, Southam L, Panoutsopoulou K, Rayner NW, Esko T, Estrada K, et al. A variant in MCF2L is associated with osteoarthritis. Am J Hum Genet. 2011;89:446–50.PubMedCentralCrossRefPubMed Day-Williams AG, Southam L, Panoutsopoulou K, Rayner NW, Esko T, Estrada K, et al. A variant in MCF2L is associated with osteoarthritis. Am J Hum Genet. 2011;89:446–50.PubMedCentralCrossRefPubMed
8.
go back to reference Cheng L, Mahon GM, Kostenko EV, Whitehead IP. Pleckstrin homology domain-mediated activation of the rho-specific guanine nucleotide exchange factor Dbs by Rac1. J Biol Chem. 2004;279:12786–93.CrossRefPubMed Cheng L, Mahon GM, Kostenko EV, Whitehead IP. Pleckstrin homology domain-mediated activation of the rho-specific guanine nucleotide exchange factor Dbs by Rac1. J Biol Chem. 2004;279:12786–93.CrossRefPubMed
9.
go back to reference Liu Z, Adams HC, Whitehead IP. The rho-specific guanine nucleotide exchange factor Dbs regulates breast cancer cell migration. J Biol Chem. 2009;284:15771–80.PubMedCentralCrossRefPubMed Liu Z, Adams HC, Whitehead IP. The rho-specific guanine nucleotide exchange factor Dbs regulates breast cancer cell migration. J Biol Chem. 2009;284:15771–80.PubMedCentralCrossRefPubMed
10.
go back to reference Whitehead IP, Lambert QT, Glaven JA, Abe K, Rossman KL, Mahon GM, et al. Dependence of Dbl and Dbs transformation on MEK and NF-kappaB activation. Mol Cell Biol. 1999;19:7759–70.PubMedCentralCrossRefPubMed Whitehead IP, Lambert QT, Glaven JA, Abe K, Rossman KL, Mahon GM, et al. Dependence of Dbl and Dbs transformation on MEK and NF-kappaB activation. Mol Cell Biol. 1999;19:7759–70.PubMedCentralCrossRefPubMed
11.
go back to reference Kerr BA, Otani T, Koyama E, Freeman TA, Enomoto-Iwamoto M. Small GTPase protein Rac-1 is activated with maturation and regulates cell morphology and function in chondrocytes. Exp Cell Res. 2008;314:1301–12.PubMedCentralCrossRefPubMed Kerr BA, Otani T, Koyama E, Freeman TA, Enomoto-Iwamoto M. Small GTPase protein Rac-1 is activated with maturation and regulates cell morphology and function in chondrocytes. Exp Cell Res. 2008;314:1301–12.PubMedCentralCrossRefPubMed
12.
go back to reference Wang G, Beier F. Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis. J Bone Miner Res. 2005;20:1022–31.CrossRefPubMed Wang G, Beier F. Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis. J Bone Miner Res. 2005;20:1022–31.CrossRefPubMed
13.
go back to reference Woods A, Pala D, Kennedy L, McLean S, Rockel JS, Wang G, et al. Rac1 signaling regulates CTGF/CCN2 gene expression via TGFβ/Smad signaling in chondrocytes. Osteoarthritis Cartilage. 2009;17:406–13.CrossRefPubMed Woods A, Pala D, Kennedy L, McLean S, Rockel JS, Wang G, et al. Rac1 signaling regulates CTGF/CCN2 gene expression via TGFβ/Smad signaling in chondrocytes. Osteoarthritis Cartilage. 2009;17:406–13.CrossRefPubMed
14.
go back to reference Woods A, Wang G, Dupuis H, Shao Z, Beier F. Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation, and chondrogenesis. J Biol Chem. 2007;282:23500–8.CrossRefPubMed Woods A, Wang G, Dupuis H, Shao Z, Beier F. Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation, and chondrogenesis. J Biol Chem. 2007;282:23500–8.CrossRefPubMed
15.
go back to reference Chan A, Akhtar M, Brenner M, Zheng Y, Gulko PS, Symons M. The GTPase Rac regulates the proliferation and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Mol Med. 2007;13:297–304.PubMedCentralCrossRefPubMed Chan A, Akhtar M, Brenner M, Zheng Y, Gulko PS, Symons M. The GTPase Rac regulates the proliferation and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Mol Med. 2007;13:297–304.PubMedCentralCrossRefPubMed
16.
go back to reference Raine EV, Reynard LN, van de Larr IMBH, Bertoli-Avella AM, Loughlin J. Identification and analysis of a SMAD3 cis-acting eQTL operating in primary osteoarthritis and in the aortic aneurysms and early-onset OA syndrome. Osteoarthritis Cartilage. 2014;22:698–705.PubMedCentralCrossRefPubMed Raine EV, Reynard LN, van de Larr IMBH, Bertoli-Avella AM, Loughlin J. Identification and analysis of a SMAD3 cis-acting eQTL operating in primary osteoarthritis and in the aortic aneurysms and early-onset OA syndrome. Osteoarthritis Cartilage. 2014;22:698–705.PubMedCentralCrossRefPubMed
17.
go back to reference Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol. 2014;32:462–4.PubMedCentralCrossRefPubMed Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol. 2014;32:462–4.PubMedCentralCrossRefPubMed
19.
go back to reference Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–9.PubMedCentralCrossRefPubMed Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–9.PubMedCentralCrossRefPubMed
20.
go back to reference Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.PubMedCentralCrossRefPubMed Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.PubMedCentralCrossRefPubMed
22.
go back to reference Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. 2006;8:R187.PubMedCentralCrossRefPubMed Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. 2006;8:R187.PubMedCentralCrossRefPubMed
23.
go back to reference Gee F, Clubbs CF, Raine EV, Reynard LN, Loughlin J. Allelic expression analysis of the osteoarthritis susceptibility locus that maps to chromosome 3p21 reveals cis-acting eQTLs at GNL3 and SPCS1. BMC Med Genet. 2014;15:53.PubMedCentralCrossRefPubMed Gee F, Clubbs CF, Raine EV, Reynard LN, Loughlin J. Allelic expression analysis of the osteoarthritis susceptibility locus that maps to chromosome 3p21 reveals cis-acting eQTLs at GNL3 and SPCS1. BMC Med Genet. 2014;15:53.PubMedCentralCrossRefPubMed
24.
go back to reference Ratnayake M, Reynard LN, Raine EV, Santibanez-Koref M, Loughlin J. Allelic expression analysis of the osteoarthritis susceptibility locus that maps to MICAL3. BMC Med Genet. 2012;13:12.PubMedCentralCrossRefPubMed Ratnayake M, Reynard LN, Raine EV, Santibanez-Koref M, Loughlin J. Allelic expression analysis of the osteoarthritis susceptibility locus that maps to MICAL3. BMC Med Genet. 2012;13:12.PubMedCentralCrossRefPubMed
25.
go back to reference Fu J, Wolfs MG, Deelen P, Westra HJ, Fehrmann RS, Te Meerman GJ, et al. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet. 2012;8:e1002431.PubMedCentralCrossRefPubMed Fu J, Wolfs MG, Deelen P, Westra HJ, Fehrmann RS, Te Meerman GJ, et al. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet. 2012;8:e1002431.PubMedCentralCrossRefPubMed
Metadata
Title
Expression analysis of the osteoarthritis genetic susceptibility locus mapping to an intron of the MCF2L gene and marked by the polymorphism rs11842874
Authors
Colin Shepherd
Andrew J. Skelton
Michael D. Rushton
Louise N. Reynard
John Loughlin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2015
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-015-0254-2

Other articles of this Issue 1/2015

BMC Medical Genetics 1/2015 Go to the issue