Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Research article

Exploring when and how adolescents sit: cross-sectional analysis of activPAL-measured patterns of daily sitting time, bouts and breaks

Authors: Lauren Arundell, Jo Salmon, Harriet Koorts, Ana Maria Contardo Ayala, Anna Timperio

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

This study describes patterns of adolescents’ objectively-measured sitting volume, sitting bouts, and breaks in sitting during different days and periods of the day, and explored differences by sex and weekdays versus weekend days.

Methods

ActivPAL™ data were collected in August 2014–December 2015 from adolescents attending secondary government schools in Melbourne Australia. Eight periods (early morning, mid-morning, morning break, late morning, lunch, early afternoon, late-afternoon and evening) were extracted for each day. School time, class time and out-of-school time were also extracted for weekdays. The percentage of time sitting, percentage of each hour in prolonged sitting (sitting bout ≥10 min), and number of sitting breaks/hour were calculated for each period. Differences by sex, and week and weekend days were determined using t-tests.

Results

Participants (n = 297, 15.4 ± 1.6 years) spent 68% of their day sitting; ~ 30% of each hour in prolonged sitting and 3.1 sitting breaks/hour. Sitting time was greater during class time (75%) and school (70%) compared to out-of-school time (65%). Sitting patterns differed between week and weekend days for all periods except the evening period. Girls had higher proportion of sitting during class than boys (76% vs 72% respectively) and school hours (72% vs 67%), more prolonged sitting during school hours (27% vs 23%), and more sitting breaks per hour during out-of-school time (2.6 vs 2.4), but fewer during class (2.5 vs 3.3) and school hours (2.7 vs 3.3). Sitting patterns did not differ by sex on weekend days.

Conclusions

Adolescents spent two-thirds of their waking hours sitting, with distinct patterns on weekdays and weekend days. Even though boys and girls were exposed to the same school day routine, girls spent more time sitting and had fewer sitting breaks. Class times, school breaks and the evening period were identified as key intervention periods. Further research is needed to understand the behavioural differences, and guide future intervention design.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput J-P, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6 (Suppl. 3):S240–S65.CrossRef Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput J-P, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6 (Suppl. 3):S240–S65.CrossRef
2.
go back to reference Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.CrossRef Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.CrossRef
3.
go back to reference Tremblay M, LeBlanc A, Janssen I, Kho M, Hicks A, Murumets K. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64.CrossRef Tremblay M, LeBlanc A, Janssen I, Kho M, Hicks A, Murumets K. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64.CrossRef
5.
go back to reference Australian Bureau of Statistics. Australian Health Survey: Physical Activity, 2011–12. cat no. 4364.0.55.004 Canberra: Commonwealth of Australia; 2013. Australian Bureau of Statistics. Australian Health Survey: Physical Activity, 2011–12. cat no. 4364.0.55.004 Canberra: Commonwealth of Australia; 2013.
6.
go back to reference Arundell L, Fletcher E, Salmon J, Veitch J, Hinkley T. The correlates of after-school sedentary behavior among children aged 5–18 years: a systematic review. BMC Public Health. 2016;16(1):1–10. Arundell L, Fletcher E, Salmon J, Veitch J, Hinkley T. The correlates of after-school sedentary behavior among children aged 5–18 years: a systematic review. BMC Public Health. 2016;16(1):1–10.
7.
go back to reference Al Subhi LK, Bose S, Al Ani MF. Prevalence of physically active and sedentary adolescents in 10 eastern Mediterranean countries and its relation with age, sex, and body mass index. J Phys Act Health. 2015;12(2):257–65.CrossRef Al Subhi LK, Bose S, Al Ani MF. Prevalence of physically active and sedentary adolescents in 10 eastern Mediterranean countries and its relation with age, sex, and body mass index. J Phys Act Health. 2015;12(2):257–65.CrossRef
8.
go back to reference Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976–83.CrossRef Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976–83.CrossRef
9.
go back to reference Fletcher EA, Salmon J, McNaughton SA, Orellana L, Wadley GD, Bruce C, et al. Effects of breaking up sitting on adolescents’ postprandial glucose after consuming meals varying in energy: a cross-over randomised trial. J Sci Med Sport. 2018;21(3):280–5.CrossRef Fletcher EA, Salmon J, McNaughton SA, Orellana L, Wadley GD, Bruce C, et al. Effects of breaking up sitting on adolescents’ postprandial glucose after consuming meals varying in energy: a cross-over randomised trial. J Sci Med Sport. 2018;21(3):280–5.CrossRef
10.
go back to reference Healy G, Matthews C, Dunstan D, Winkler E, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590–7.CrossRef Healy G, Matthews C, Dunstan D, Winkler E, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590–7.CrossRef
11.
go back to reference Bellettiere J, Winkler EAH, Chastin SFM, Kerr J, Owen N, Dunstan DW, et al. Associations of sitting accumulation patterns with cardio-metabolic risk biomarkers in Australian adults. PLoS One. 2017;12(6):e0180119.CrossRef Bellettiere J, Winkler EAH, Chastin SFM, Kerr J, Owen N, Dunstan DW, et al. Associations of sitting accumulation patterns with cardio-metabolic risk biomarkers in Australian adults. PLoS One. 2017;12(6):e0180119.CrossRef
12.
go back to reference Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–44.CrossRef Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–44.CrossRef
13.
go back to reference Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health. 2011;11(1):274.CrossRef Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health. 2011;11(1):274.CrossRef
14.
go back to reference Carson V, Cliff D, Janssen X, Okely A. Longitudinal levels and bouts of sedentary time among adolescent girls. BMC Pediatr. 2013;13(1):173.CrossRef Carson V, Cliff D, Janssen X, Okely A. Longitudinal levels and bouts of sedentary time among adolescent girls. BMC Pediatr. 2013;13(1):173.CrossRef
15.
go back to reference Ruiz J, Ortega F, Martinez-Gomez D, Labayen I, Moreno L, De Bourdeaudhuij I, et al. Objectively measured physical activity and sedentary time in European adolescents: the HELENA study. Am J Epidemiol. 2011;174(2):173–84.CrossRef Ruiz J, Ortega F, Martinez-Gomez D, Labayen I, Moreno L, De Bourdeaudhuij I, et al. Objectively measured physical activity and sedentary time in European adolescents: the HELENA study. Am J Epidemiol. 2011;174(2):173–84.CrossRef
16.
go back to reference Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead millennium study. Int J Behav Nutr Phys Act. 2016;13:1–10.CrossRef Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead millennium study. Int J Behav Nutr Phys Act. 2016;13:1–10.CrossRef
17.
go back to reference Hughes AR, Muggeridge DJ, Gibson A-M, Johnstone A, Kirk A. Objectively measured sedentary time in children and their parents. AIMS Public Health. 2016;3(4):823–36.CrossRef Hughes AR, Muggeridge DJ, Gibson A-M, Johnstone A, Kirk A. Objectively measured sedentary time in children and their parents. AIMS Public Health. 2016;3(4):823–36.CrossRef
18.
go back to reference Dowd KP, Harrington DM, Bourke AK, Nelson J, Donnelly AE. The measurement of sedentary patterns and behaviors using the activPAL™ professional physical activity monitor. Physiol Meas. 2012;33(11):1.CrossRef Dowd KP, Harrington DM, Bourke AK, Nelson J, Donnelly AE. The measurement of sedentary patterns and behaviors using the activPAL™ professional physical activity monitor. Physiol Meas. 2012;33(11):1.CrossRef
19.
go back to reference Dowd K, Hannigan A, Purtill H, Macken AP, Harrington D, Kelly SM, et al. The development of activity profiles in adolescent females and their association with adiposity. Pediatr Exerc Sci. 2016;28(1):109–16.CrossRef Dowd K, Hannigan A, Purtill H, Macken AP, Harrington D, Kelly SM, et al. The development of activity profiles in adolescent females and their association with adiposity. Pediatr Exerc Sci. 2016;28(1):109–16.CrossRef
20.
go back to reference Harrington DM, Dowd KP, Bourke AK, Donnelly AE. Cross-sectional analysis of levels and patterns of objectively measured sedentary time in adolescent females. Int J Behav Nutr Phys Act. 2011;8(1):120.CrossRef Harrington DM, Dowd KP, Bourke AK, Donnelly AE. Cross-sectional analysis of levels and patterns of objectively measured sedentary time in adolescent females. Int J Behav Nutr Phys Act. 2011;8(1):120.CrossRef
21.
go back to reference Australian Bureau of Statistics. Basic community profile release 1: SA1, data pack. Australia: Canberra; 2011. Australian Bureau of Statistics. Basic community profile release 1: SA1, data pack. Australia: Canberra; 2011.
22.
go back to reference Giles-Corti B, Macaulay G, Middleton N, Boruff B, Bull F, Butterworth I, et al. Developing a research and practice tool to measure walkability: a demonstration project. Health Promot J Austr. 2015;25(3):160–6.CrossRef Giles-Corti B, Macaulay G, Middleton N, Boruff B, Bull F, Butterworth I, et al. Developing a research and practice tool to measure walkability: a demonstration project. Health Promot J Austr. 2015;25(3):160–6.CrossRef
23.
go back to reference Sellers C, Dall P, Grant M, Stansfield B. Validity and reliability of the activPAL3 for measuring posture and stepping in adults and young people. Gait Posture. 2016;43:42–7.CrossRef Sellers C, Dall P, Grant M, Stansfield B. Validity and reliability of the activPAL3 for measuring posture and stepping in adults and young people. Gait Posture. 2016;43:42–7.CrossRef
24.
go back to reference Dowd KP, Harrington DM, Donnelly AE. Criterion and concurrent validity of the activPAL professional physical activity monitor in adolescent females. PLoS One. 2012;7(10):1–9.CrossRef Dowd KP, Harrington DM, Donnelly AE. Criterion and concurrent validity of the activPAL professional physical activity monitor in adolescent females. PLoS One. 2012;7(10):1–9.CrossRef
25.
go back to reference Davies G, Reilly JJ, McGowan AJ, Dall PM, Granat MH, Paton JY. Validity, practical utility, and reliability of the activPAL(TM) in preschool children. Med Sci Sports Exerc April. 2012;44(4):761–8.CrossRef Davies G, Reilly JJ, McGowan AJ, Dall PM, Granat MH, Paton JY. Validity, practical utility, and reliability of the activPAL(TM) in preschool children. Med Sci Sports Exerc April. 2012;44(4):761–8.CrossRef
26.
go back to reference Aminian S, Hinckson E. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9(1):119.CrossRef Aminian S, Hinckson E. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9(1):119.CrossRef
27.
go back to reference Cain K, Sallis J, Conway T, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2012;10(3):437–50.CrossRef Cain K, Sallis J, Conway T, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2012;10(3):437–50.CrossRef
28.
go back to reference Trost S, Pate R, Freedson P, Sallis J, Taylor W. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):426–31.CrossRef Trost S, Pate R, Freedson P, Sallis J, Taylor W. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):426–31.CrossRef
29.
go back to reference Arundell L, Ridgers ND, Veitch J, Salmon J, Hinkley T, Timperio A. 5-year changes in afterschool physical activity and sedentary behavior. Am J Prev Med. 2013;44(6):605–11.CrossRef Arundell L, Ridgers ND, Veitch J, Salmon J, Hinkley T, Timperio A. 5-year changes in afterschool physical activity and sedentary behavior. Am J Prev Med. 2013;44(6):605–11.CrossRef
30.
go back to reference Ridgers ND, Timperio A, Crawford D, Salmon J. Five-year changes in school recess and lunchtime and the contribution to children's daily physical activity. Br J Sports Med. 2011. Ridgers ND, Timperio A, Crawford D, Salmon J. Five-year changes in school recess and lunchtime and the contribution to children's daily physical activity. Br J Sports Med. 2011.
31.
go back to reference Edwardson CL, Winkler EAH, Bodicoat DH, Yates T, Davies MJ, Dunstan DW, et al. Considerations when using the activPAL monitor in field-based research with adult populations. J Sport Health Sci. 2017;6(2):162–78.CrossRef Edwardson CL, Winkler EAH, Bodicoat DH, Yates T, Davies MJ, Dunstan DW, et al. Considerations when using the activPAL monitor in field-based research with adult populations. J Sport Health Sci. 2017;6(2):162–78.CrossRef
33.
go back to reference Hinckson E, Salmon J, Benden M, Clemes S, Sudholz B, Barber S, et al. Standing classrooms: research and lessons learned from around the world. Sports Med. 2015;(Preprints):1–11. Hinckson E, Salmon J, Benden M, Clemes S, Sudholz B, Barber S, et al. Standing classrooms: research and lessons learned from around the world. Sports Med. 2015;(Preprints):1–11.
34.
go back to reference McMichan L, Gibson A-M, Rowe DA. Classroom-based physical activity and sedentary behavior interventions in adolescents: a systematic review and meta-analysis. J Phys Act Health. 2018;15(5):383–93.CrossRef McMichan L, Gibson A-M, Rowe DA. Classroom-based physical activity and sedentary behavior interventions in adolescents: a systematic review and meta-analysis. J Phys Act Health. 2018;15(5):383–93.CrossRef
35.
go back to reference Hynynen ST, van Stralen MM, Sniehotta FF, Araújo-Soares V, Hardeman W, Chinapaw MJM, et al. A systematic review of school-based interventions targeting physical activity and sedentary behaviour among older adolescents. Int Rev Sport Exerc Psychol. 2016;9(1):22–44.CrossRef Hynynen ST, van Stralen MM, Sniehotta FF, Araújo-Soares V, Hardeman W, Chinapaw MJM, et al. A systematic review of school-based interventions targeting physical activity and sedentary behaviour among older adolescents. Int Rev Sport Exerc Psychol. 2016;9(1):22–44.CrossRef
36.
go back to reference Stanley RM, Ridley K, Dollman J. Correlates of children's time-specific physical activity: a review of the literature. Int J Behav Nutr Phys Act. 2012;9:50.CrossRef Stanley RM, Ridley K, Dollman J. Correlates of children's time-specific physical activity: a review of the literature. Int J Behav Nutr Phys Act. 2012;9:50.CrossRef
37.
go back to reference Van Der Horst K, Paw MJ, Twisk JW, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef Van Der Horst K, Paw MJ, Twisk JW, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef
38.
go back to reference Sallis J, Prochaska J, Taylor W. A review of correlates of physical activity of children and adolescents. Med Sci Sports Exerc. 2000;32:963–75.CrossRef Sallis J, Prochaska J, Taylor W. A review of correlates of physical activity of children and adolescents. Med Sci Sports Exerc. 2000;32:963–75.CrossRef
39.
go back to reference Carlin A, Murphy MH, Nevill A, Gallagher AM. Effects of a peer-led walking in ScHools intervention (the WISH study) on physical activity levels of adolescent girls: a cluster randomised pilot study. Trials. 2018;19:1–12.CrossRef Carlin A, Murphy MH, Nevill A, Gallagher AM. Effects of a peer-led walking in ScHools intervention (the WISH study) on physical activity levels of adolescent girls: a cluster randomised pilot study. Trials. 2018;19:1–12.CrossRef
40.
go back to reference Arundell L, Fletcher E, Salmon J, Veitch J, Hinkley T. A systematic review of the prevalence of sedentary behavior during the after-school period among children aged 5-18 years. Int J Behav Nutr Phys Act. 2016;13(1):1–9.CrossRef Arundell L, Fletcher E, Salmon J, Veitch J, Hinkley T. A systematic review of the prevalence of sedentary behavior during the after-school period among children aged 5-18 years. Int J Behav Nutr Phys Act. 2016;13(1):1–9.CrossRef
41.
go back to reference Dowd KP, Purtill H, Harrington DM, Hislop JF, Reilly JJ, Donnelly AE. Minimum Wear duration for the activPAL professional activity monitor in adolescent females. Pediatr Exerc Sci. 2017;29(3):427–33.CrossRef Dowd KP, Purtill H, Harrington DM, Hislop JF, Reilly JJ, Donnelly AE. Minimum Wear duration for the activPAL professional activity monitor in adolescent females. Pediatr Exerc Sci. 2017;29(3):427–33.CrossRef
Metadata
Title
Exploring when and how adolescents sit: cross-sectional analysis of activPAL-measured patterns of daily sitting time, bouts and breaks
Authors
Lauren Arundell
Jo Salmon
Harriet Koorts
Ana Maria Contardo Ayala
Anna Timperio
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-6960-5

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue