Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2017

Open Access 01-12-2017 | Research

Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism

Authors: Caitlin M. Hudac, Holly A. F. Stessman, Trent D. DesChamps, Anna Kresse, Susan Faja, Emily Neuhaus, Sara Jane Webb, Evan E. Eichler, Raphael A. Bernier

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2017

Login to get access

Abstract

Background

Autism spectrum disorder (ASD) is a genetically and phenotypically heterogeneous disorder. Promising initiatives utilizing interdisciplinary characterization of ASD suggest phenotypic subtypes related to specific likely gene-disrupting mutations (LGDMs). However, the role of functionally associated LGDMs in the neural social phenotype is unknown.

Methods

In this study of 26 children with ASD (n = 13 with an LGDM) and 13 control children, we characterized patterns of mu attenuation and habituation as children watched videos containing social and nonsocial motions during electroencephalography acquisition.

Results

Diagnostic comparisons were consistent with prior work suggesting aberrant mu attenuation in ASD within the upper mu band (10–12 Hz), but typical patterns within the lower mu band (8–10 Hz). Preliminary exploration indicated distinct social sensitization patterns (i.e., increasing mu attenuation for social motion) for children with an LGDM that is primarily expressed during embryonic development. In contrast, children with an LGDM primarily expressed post-embryonic development exhibited stable typical patterns of lower mu attenuation. Neural social indices were associated with social responsiveness, but not cognition.

Conclusions

These findings suggest unique neurophysiological profiles for certain genetic etiologies of ASD, further clarifying possible genetic functional subtypes of ASD and providing insight into mechanisms for targeted treatment approaches.
Appendix
Available only for authorised users
Literature
2.
go back to reference Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.CrossRefPubMed Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.CrossRefPubMed
4.
go back to reference Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Glob Health. 2015;14(11):1109–20. Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Glob Health. 2015;14(11):1109–20.
5.
go back to reference Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.CrossRefPubMedPubMedCentral Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.CrossRefPubMedPubMedCentral
6.
go back to reference Higdon R, Earl RK, Stanberry L, Hudac CM, Montague E, Stewart E, et al. The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. OMICS. 2015;19:197–208. Available from: http://online.liebertpub.com/doi/10.1089/omi.2015.0020.CrossRefPubMedPubMedCentral Higdon R, Earl RK, Stanberry L, Hudac CM, Montague E, Stewart E, et al. The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. OMICS. 2015;19:197–208. Available from: http://​online.​liebertpub.​com/​doi/​10.​1089/​omi.​2015.​0020.CrossRefPubMedPubMedCentral
7.
go back to reference Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:1–14. Elsevier Inc.CrossRef Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:1–14. Elsevier Inc.CrossRef
8.
go back to reference van Bon B, Hoischen A, Hehir-Kwa J, de Brouwer A, Ruivenkamp C, Gijsbers A, et al. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin Genet. 2011;79:296–9.CrossRefPubMed van Bon B, Hoischen A, Hehir-Kwa J, de Brouwer A, Ruivenkamp C, Gijsbers A, et al. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin Genet. 2011;79:296–9.CrossRefPubMed
9.
go back to reference van Bon BWM, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Molecular Psychiatry. 2016;21:126–32. Nature Publishing Group.CrossRefPubMed van Bon BWM, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Molecular Psychiatry. 2016;21:126–32. Nature Publishing Group.CrossRefPubMed
10.
go back to reference Wechsler D. Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio: The Psychological Corporation; 1999. Wechsler D. Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio: The Psychological Corporation; 1999.
12.
go back to reference Bernier R, Dawson G, Webb S, Murias M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cogn. 2007;64:228–37.CrossRefPubMedPubMedCentral Bernier R, Dawson G, Webb S, Murias M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cogn. 2007;64:228–37.CrossRefPubMedPubMedCentral
13.
go back to reference Webb SJ, Merkle K, Murias M, Richards T, Aylward E, Dawson G. ERP responses differentiate inverted but not upright face processing in adults with ASD. Soc Cogn Affect Neurosci. 2012;7:578–87. Oxford University Press.CrossRefPubMed Webb SJ, Merkle K, Murias M, Richards T, Aylward E, Dawson G. ERP responses differentiate inverted but not upright face processing in adults with ASD. Soc Cogn Affect Neurosci. 2012;7:578–87. Oxford University Press.CrossRefPubMed
14.
go back to reference Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci. 2013;110:20953–8.CrossRefPubMedPubMedCentral Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci. 2013;110:20953–8.CrossRefPubMedPubMedCentral
16.
go back to reference Berman JI, Chudnovskaya D, Blaskey L, Kuschner E, Mukherjee P, Buckner R, et al. Abnormal auditory and language pathways in children with 16p11.2 deletion. Neuroimage Clin. 2015;9:50–7. Elsevier B.V.CrossRefPubMedPubMedCentral Berman JI, Chudnovskaya D, Blaskey L, Kuschner E, Mukherjee P, Buckner R, et al. Abnormal auditory and language pathways in children with 16p11.2 deletion. Neuroimage Clin. 2015;9:50–7. Elsevier B.V.CrossRefPubMedPubMedCentral
17.
go back to reference Hudac CM, Kresse A, Aaronson B, DesChamps TD, Webb SJ, Bernier RA. Modulation of mu attenuation to social stimuli in children and adults with 16p11. 2 deletions and duplications. J Neurodevelopmental Dis. 2015;7(1):25. Hudac CM, Kresse A, Aaronson B, DesChamps TD, Webb SJ, Bernier RA. Modulation of mu attenuation to social stimuli in children and adults with 16p11. 2 deletions and duplications. J Neurodevelopmental Dis. 2015;7(1):25.
18.
go back to reference Iossifov I, Levy D, Allen J, Ye K, Ronemus M, Lee Y-H, et al. Low load for disruptive mutations in autism genes and their biased transmission. Proc Natl Acad Sci. 2015;112(41):E5600-7. Iossifov I, Levy D, Allen J, Ye K, Ronemus M, Lee Y-H, et al. Low load for disruptive mutations in autism genes and their biased transmission. Proc Natl Acad Sci. 2015;112(41):E5600-7.
19.
go back to reference Rampersad M, Gerlai R. Impairment of social behaviour persists two years after embryonic alcohol exposure in zebrafish: a model of fetal alcohol spectrum disorders. Behav Brain Res. 2015;292:102–8. Elsevier B.V.CrossRefPubMedPubMedCentral Rampersad M, Gerlai R. Impairment of social behaviour persists two years after embryonic alcohol exposure in zebrafish: a model of fetal alcohol spectrum disorders. Behav Brain Res. 2015;292:102–8. Elsevier B.V.CrossRefPubMedPubMedCentral
20.
go back to reference Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Translational Psychiatry. 2015;5:e623–11. Nature Publishing Group.CrossRefPubMedPubMedCentral Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Translational Psychiatry. 2015;5:e623–11. Nature Publishing Group.CrossRefPubMedPubMedCentral
21.
go back to reference Malishkevich A, Amram N, Hacohen-Kleiman G, Magen I, Giladi E, Gozes I. Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Nat Publ Group. 2015;5:e501–9. Malishkevich A, Amram N, Hacohen-Kleiman G, Magen I, Giladi E, Gozes I. Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Nat Publ Group. 2015;5:e501–9.
22.
go back to reference Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 2016;98:541–52.CrossRefPubMedPubMedCentral Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 2016;98:541–52.CrossRefPubMedPubMedCentral
24.
go back to reference Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during observation of an object-directed grasp. Cogn Brain Res. 2004;19:195–201.CrossRef Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during observation of an object-directed grasp. Cogn Brain Res. 2004;19:195–201.CrossRef
26.
go back to reference Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997;239:65–8.CrossRefPubMed Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997;239:65–8.CrossRefPubMed
27.
go back to reference Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert RE, et al. Assessing human mirror activity with EEG mu rhythm: a meta-analysis. Psychol Bull. 2016;142:291–313. American Psychological Association.CrossRefPubMed Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert RE, et al. Assessing human mirror activity with EEG mu rhythm: a meta-analysis. Psychol Bull. 2016;142:291–313. American Psychological Association.CrossRefPubMed
28.
go back to reference Pineda JA, Brang D, Hecht E, Edwards L, Carey S, Bacon M, Futagaki C, Suk D, Tom J, Birnbaum C, Rork A. Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Res Autism Spectr Disord. 2008;2(3):557–81.CrossRef Pineda JA, Brang D, Hecht E, Edwards L, Carey S, Bacon M, Futagaki C, Suk D, Tom J, Birnbaum C, Rork A. Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Res Autism Spectr Disord. 2008;2(3):557–81.CrossRef
29.
go back to reference Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8:300–4. Oxford University Press.CrossRefPubMed Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8:300–4. Oxford University Press.CrossRefPubMed
30.
go back to reference Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res. 2005;24:190–8.CrossRefPubMed Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res. 2005;24:190–8.CrossRefPubMed
31.
go back to reference Raymaekers R, Wiersema JR, Roeyers H. EEG study of the mirror neuron system in children with high functioning autism. Brain Res. 2009;1304:113–21.CrossRefPubMed Raymaekers R, Wiersema JR, Roeyers H. EEG study of the mirror neuron system in children with high functioning autism. Brain Res. 2009;1304:113–21.CrossRefPubMed
32.
go back to reference Fan Y-T, Decety J, Yang C-Y, Liu J-L, Cheng Y. Unbroken mirror neurons in autism spectrum disorders. J Child Psychol Psychiatry. 2010;51:981–8.CrossRefPubMed Fan Y-T, Decety J, Yang C-Y, Liu J-L, Cheng Y. Unbroken mirror neurons in autism spectrum disorders. J Child Psychol Psychiatry. 2010;51:981–8.CrossRefPubMed
33.
go back to reference Bernier R, Aaronson B, McPartland J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn. 2013;82:69–75.CrossRefPubMed Bernier R, Aaronson B, McPartland J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn. 2013;82:69–75.CrossRefPubMed
34.
go back to reference Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014;1585:108–19.CrossRefPubMed Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014;1585:108–19.CrossRefPubMed
35.
go back to reference Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013;1509:43–57.CrossRefPubMed Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013;1509:43–57.CrossRefPubMed
36.
go back to reference Sacchet MD, LaPlante RA, Wan Q, Pritchett DL, Lee AKC, Hamalainen M, et al. Attention drives synchronization of alpha and beta rhythms between right inferior frontal and primary sensory neocortex. J Neurosci. 2015;35:2074–82.CrossRefPubMedPubMedCentral Sacchet MD, LaPlante RA, Wan Q, Pritchett DL, Lee AKC, Hamalainen M, et al. Attention drives synchronization of alpha and beta rhythms between right inferior frontal and primary sensory neocortex. J Neurosci. 2015;35:2074–82.CrossRefPubMedPubMedCentral
37.
go back to reference Başar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol. 2012;86:1–24. Elsevier B.V.CrossRefPubMed Başar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol. 2012;86:1–24. Elsevier B.V.CrossRefPubMed
38.
go back to reference Naeem M, Prasad G, Watson DR, Kelso JAS. Electrophysiological signatures of intentional social coordination in the 10-12 Hz range. Neuroimage. 2012;59:1795–803.CrossRefPubMed Naeem M, Prasad G, Watson DR, Kelso JAS. Electrophysiological signatures of intentional social coordination in the 10-12 Hz range. Neuroimage. 2012;59:1795–803.CrossRefPubMed
39.
go back to reference Fink A, Schwab D, Papousek I. Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. Int J Psychophysiol. 2011;82:233–9.CrossRefPubMed Fink A, Schwab D, Papousek I. Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. Int J Psychophysiol. 2011;82:233–9.CrossRefPubMed
40.
go back to reference Fink A, Grabner RH, Neuper C, Neubauer AC. EEG alpha band dissociation with increasing task demands. Cogn Brain Res. 2005;24:252–9.CrossRef Fink A, Grabner RH, Neuper C, Neubauer AC. EEG alpha band dissociation with increasing task demands. Cogn Brain Res. 2005;24:252–9.CrossRef
41.
go back to reference Patapoutian A, Reichardt LF. Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurol. 2000;10:392–9. NIH Public Access.CrossRef Patapoutian A, Reichardt LF. Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurol. 2000;10:392–9. NIH Public Access.CrossRef
42.
go back to reference O'Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5:5595.CrossRefPubMedPubMedCentral O'Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5:5595.CrossRefPubMedPubMedCentral
43.
go back to reference O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.CrossRefPubMedPubMedCentral O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.CrossRefPubMedPubMedCentral
44.
go back to reference Vandeweyer G, Helsmoortel C, Van Dijck A, Vulto-van Silfhout AT, Coe BP, Bernier R, et al. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. Kosho T, Miyake N, editors. Am J Med Genet C Semin Med Genet. 2014;166:315–26 Vandeweyer G, Helsmoortel C, Van Dijck A, Vulto-van Silfhout AT, Coe BP, Bernier R, et al. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. Kosho T, Miyake N, editors. Am J Med Genet C Semin Med Genet. 2014;166:315–26
45.
go back to reference Coe BP, Witherspoon K, Rosenfeld JA, van Bon BWM, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46:1063–71. Available from: http://dx.doi.org/10.1038/ng.3092.CrossRefPubMedPubMedCentral Coe BP, Witherspoon K, Rosenfeld JA, van Bon BWM, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46:1063–71. Available from: http://​dx.​doi.​org/​10.​1038/​ng.​3092.CrossRefPubMedPubMedCentral
46.
go back to reference Lumish HS, Wynn J, Devinsky O, Chung WK. Brief report: SETD2 mutation in a child with autism, intellectual disabilities and epilepsy. J Autism Dev Disord. 2015;45(11):3764–70.CrossRefPubMed Lumish HS, Wynn J, Devinsky O, Chung WK. Brief report: SETD2 mutation in a child with autism, intellectual disabilities and epilepsy. J Autism Dev Disord. 2015;45(11):3764–70.CrossRefPubMed
47.
go back to reference O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2013;485:246–50. Nature Publishing Group.CrossRef O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2013;485:246–50. Nature Publishing Group.CrossRef
48.
go back to reference Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, et al. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry. 2003;8:186–94.CrossRefPubMed Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, et al. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry. 2003;8:186–94.CrossRefPubMed
49.
go back to reference Constantino JN, Przybeck T, Friesen D, Todd RD. Reciprocal social behavior in children with and without pervasive developmental disorders. LWW; 2000;21:2–11 Constantino JN, Przybeck T, Friesen D, Todd RD. Reciprocal social behavior in children with and without pervasive developmental disorders. LWW; 2000;21:2–11
50.
go back to reference Elliott CD. Differential Ability Scales-ll. Pearson: San Antonio; 2007. Elliott CD. Differential Ability Scales-ll. Pearson: San Antonio; 2007.
51.
go back to reference Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRefPubMed Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRefPubMed
52.
go back to reference Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.CrossRefPubMed Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.CrossRefPubMed
53.
go back to reference Sparrow SS, Cicchetti DV, Balla DA, Doll EA. Vineland-II, Vineland Adaptive Behavior Scales: Teacher Rating Form. 2006. Sparrow SS, Cicchetti DV, Balla DA, Doll EA. Vineland-II, Vineland Adaptive Behavior Scales: Teacher Rating Form. 2006.
54.
go back to reference Hiatt JB, Pritchard CC, Salipante SJ, O’Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 2013;23:843–54. Cold Spring Harbor Lab.CrossRefPubMedPubMedCentral Hiatt JB, Pritchard CC, Salipante SJ, O’Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 2013;23:843–54. Cold Spring Harbor Lab.CrossRefPubMedPubMedCentral
55.
go back to reference Boyle EA, O’Roak BJ, Martin BK, Kumar A, Shendure J. MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics. 2014;30:2670–2.CrossRefPubMedPubMedCentral Boyle EA, O’Roak BJ, Martin BK, Kumar A, Shendure J. MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics. 2014;30:2670–2.CrossRefPubMedPubMedCentral
56.
go back to reference Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92:221–37.CrossRefPubMedPubMedCentral Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92:221–37.CrossRefPubMedPubMedCentral
57.
go back to reference Webb SJ, Bernier R, Henderson HA, Johnson MH, Jones EJH, Lerner MD, et al. Guidelines and best practices for electrophysiological data collection, analysis and reporting in autism. J Autism Dev Disord. 2015;45:425–43.CrossRefPubMedPubMedCentral Webb SJ, Bernier R, Henderson HA, Johnson MH, Jones EJH, Lerner MD, et al. Guidelines and best practices for electrophysiological data collection, analysis and reporting in autism. J Autism Dev Disord. 2015;45:425–43.CrossRefPubMedPubMedCentral
58.
go back to reference Neuhaus E, Jones EJH, Barnes K, Sterling L, Estes A, Munson J, et al. The relationship between early neural responses to emotional faces at age 3 and later autism and anxiety symptoms in adolescents with autism. J Autism Dev Disord. 2016;46:1–14. Springer US.CrossRef Neuhaus E, Jones EJH, Barnes K, Sterling L, Estes A, Munson J, et al. The relationship between early neural responses to emotional faces at age 3 and later autism and anxiety symptoms in adolescents with autism. J Autism Dev Disord. 2016;46:1–14. Springer US.CrossRef
59.
go back to reference Ding J, Sperling G, Srinivasan R. Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cerebral Cortex. 2006;16:1016–29.CrossRefPubMed Ding J, Sperling G, Srinivasan R. Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cerebral Cortex. 2006;16:1016–29.CrossRefPubMed
61.
go back to reference Pineda JA. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev. 2005;50:57–68.CrossRefPubMed Pineda JA. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev. 2005;50:57–68.CrossRefPubMed
62.
go back to reference Varela FJ, Toro A, John ER, Schwartz EL. Perceptual framing and cortical alpha-rhythm. Neuropsychologia. 1981;19:675–86.CrossRefPubMed Varela FJ, Toro A, John ER, Schwartz EL. Perceptual framing and cortical alpha-rhythm. Neuropsychologia. 1981;19:675–86.CrossRefPubMed
64.
go back to reference Hamilton AF De C, Brindley RM, Frith U. Imitation and action understanding in autistic spectrum disorders: how valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia. 2007;45:1859–68.CrossRef Hamilton AF De C, Brindley RM, Frith U. Imitation and action understanding in autistic spectrum disorders: how valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia. 2007;45:1859–68.CrossRef
65.
go back to reference von dem Hagen EA, Stoyanova RS, Baron-Cohen S, Calder AJ. Reduced functional connectivity within and between “social” resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci. 2012;8:694–701.CrossRef von dem Hagen EA, Stoyanova RS, Baron-Cohen S, Calder AJ. Reduced functional connectivity within and between “social” resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci. 2012;8:694–701.CrossRef
66.
go back to reference Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. Nature Publishing Group; 2014;515:216–21. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. Nature Publishing Group; 2014;515:216–21.
67.
go back to reference Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol. 2000;424:409–38.CrossRefPubMed Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol. 2000;424:409–38.CrossRefPubMed
68.
go back to reference Puelles L, Rubenstein JLR. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 2003;26:469–76.CrossRefPubMed Puelles L, Rubenstein JLR. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 2003;26:469–76.CrossRefPubMed
69.
70.
go back to reference Robinson EB, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet. 2016;48:552–5.CrossRefPubMedPubMedCentral Robinson EB, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet. 2016;48:552–5.CrossRefPubMedPubMedCentral
71.
go back to reference Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 2016;19:1454–62.CrossRefPubMed Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 2016;19:1454–62.CrossRefPubMed
72.
go back to reference Veenstra-VanderWeele J, Blakely RD. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology. 2012;37:196–212. Nature Publishing Group.CrossRefPubMed Veenstra-VanderWeele J, Blakely RD. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology. 2012;37:196–212. Nature Publishing Group.CrossRefPubMed
73.
go back to reference Key AP, Ibanez LV, Henderson HA, Warren Z, Messinger DS, Stone WL. Positive affect processing and joint attention in infants at high risk for autism: an exploratory study. J Autism Dev Disord. 2015;45:4051–62. Springer US.CrossRefPubMedPubMedCentral Key AP, Ibanez LV, Henderson HA, Warren Z, Messinger DS, Stone WL. Positive affect processing and joint attention in infants at high risk for autism: an exploratory study. J Autism Dev Disord. 2015;45:4051–62. Springer US.CrossRefPubMedPubMedCentral
74.
go back to reference Wang F, Zhu AJ, Lajiness-O'Neill R, Bowyer S. Functional network connectivity: possible biomarker for autism spectrum disorders (ASD). 2015. Wang F, Zhu AJ, Lajiness-O'Neill R, Bowyer S. Functional network connectivity: possible biomarker for autism spectrum disorders (ASD). 2015.
75.
go back to reference Neuhaus E, Bernier R, Beauchaine TP. Brief report: social skills, internalizing and externalizing symptoms, and respiratory sinus arrhythmia in autism. J Autism Dev Disord. 2014;44:730–7.CrossRefPubMed Neuhaus E, Bernier R, Beauchaine TP. Brief report: social skills, internalizing and externalizing symptoms, and respiratory sinus arrhythmia in autism. J Autism Dev Disord. 2014;44:730–7.CrossRefPubMed
76.
go back to reference Spencer MD, Holt RJ, Chura LR, Suckling J, Calder AJ, Bullmore ET, et al. A novel functional brain imaging endophenotype of autism: the neural response to facial expression of emotion. Transl Psychiatry. 2011;1:e19–7. Nature Publishing Group.CrossRefPubMedPubMedCentral Spencer MD, Holt RJ, Chura LR, Suckling J, Calder AJ, Bullmore ET, et al. A novel functional brain imaging endophenotype of autism: the neural response to facial expression of emotion. Transl Psychiatry. 2011;1:e19–7. Nature Publishing Group.CrossRefPubMedPubMedCentral
77.
go back to reference Braadbaart L, Williams JHG, Waiter GD. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol. 2013;89:99–105. Elsevier B.V.CrossRefPubMed Braadbaart L, Williams JHG, Waiter GD. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol. 2013;89:99–105. Elsevier B.V.CrossRefPubMed
Metadata
Title
Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism
Authors
Caitlin M. Hudac
Holly A. F. Stessman
Trent D. DesChamps
Anna Kresse
Susan Faja
Emily Neuhaus
Sara Jane Webb
Evan E. Eichler
Raphael A. Bernier
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2017
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-017-9199-4

Other articles of this Issue 1/2017

Journal of Neurodevelopmental Disorders 1/2017 Go to the issue