Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2014

01-02-2014 | Research Article

Exploring and enhancing relaxation-based sodium MRI contrast

Authors: Robert W. Stobbe, Christian Beaulieu

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2014

Login to get access

Abstract

Object

Sodium MRI is typically concerned with measuring tissue sodium concentration. This requires the minimization of relaxation weighting. However, 23Na relaxation may itself be interesting to explore, given an underlying mechanism (i.e. the electric-quadrupole-moment–electric-field-gradient interaction) that differs from 1H. A new sodium sequence was developed to enhance 23Na relaxation contrast without decreasing signal-to-noise ratio.

Materials and Methods

The new sequence, labeled Projection Acquisition in the steady-state with Coherent MAgNetization (PACMAN), uses gradient refocusing of transverse magnetization following readout, a short repetition time, and a long radiofrequency excitation pulse. It was developed using simulation, verified in model environments (saline and agar), and evaluated in the brain of three healthy adult volunteers.

Results

Projection Acquisition in the steady-state with Coherent MAgNetization generates a large positive contrast-to-noise ratio (CNR) between saline and agar, matching simulation-based design. In addition to enhanced CNR between cerebral spinal fluid and brain tissue in vivo, PACMAN develops substantial contrast between gray and white matter. Further simulation shows that PACMAN has a ln(T 2f/T 1) contrast dependence (where T 2f is the fast component of 23Na T 2), as well as residual quadrupole interaction dependence.

Conclusion

The relaxation dependence of PACMAN sodium MRI may provide contrast related to macromolecular tissue structure.
Literature
1.
go back to reference Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla. Brain 133:847–857PubMedCrossRef Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla. Brain 133:847–857PubMedCrossRef
2.
go back to reference Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57(1):74–81PubMedCrossRef Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57(1):74–81PubMedCrossRef
3.
go back to reference Boada FE, Christensen JD, Huanghellinger FR, Reese TG, Thulborn KR (1994) Quantitative in vivo tissue sodium concentration maps—the effects of biexponential relaxation. Magn Reson Med 32(2):219–223PubMedCrossRef Boada FE, Christensen JD, Huanghellinger FR, Reese TG, Thulborn KR (1994) Quantitative in vivo tissue sodium concentration maps—the effects of biexponential relaxation. Magn Reson Med 32(2):219–223PubMedCrossRef
4.
go back to reference Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166PubMedCrossRef Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166PubMedCrossRef
5.
go back to reference Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with Na-23 mr imaging. Radiology 227(2):529–537PubMedCrossRef Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with Na-23 mr imaging. Radiology 227(2):529–537PubMedCrossRef
6.
go back to reference Ouwerkerk R, Bottomley PA, Solaiyappan M, Spooner AE, Tomaselli GF, Wu KC, Weiss RG (2008) Tissue sodium concentration in myocardial infarction in humans: a quantitative Na-23 MR imaging study. Radiology 248(1):88–96PubMedCentralPubMedCrossRef Ouwerkerk R, Bottomley PA, Solaiyappan M, Spooner AE, Tomaselli GF, Wu KC, Weiss RG (2008) Tissue sodium concentration in myocardial infarction in humans: a quantitative Na-23 MR imaging study. Radiology 248(1):88–96PubMedCentralPubMedCrossRef
7.
go back to reference Ouwerkerk R, Jacobs MA, Macura KJ, Wolff AC, Stearns V, Mezban SD, Khouri NF, Bluemke DA, Bottomley PA (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive Na-23 MRI. Breast Cancer Res Treat 106(2):151–160PubMedCrossRef Ouwerkerk R, Jacobs MA, Macura KJ, Wolff AC, Stearns V, Mezban SD, Khouri NF, Bluemke DA, Bottomley PA (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive Na-23 MRI. Breast Cancer Res Treat 106(2):151–160PubMedCrossRef
8.
go back to reference Woessner DE (2001) NMR relaxation of spin-(3)/(2) nuclei: effects of structure, order, and dynamics in aqueous heterogeneous systems. Concept Magn Reson 13(5):294–325CrossRef Woessner DE (2001) NMR relaxation of spin-(3)/(2) nuclei: effects of structure, order, and dynamics in aqueous heterogeneous systems. Concept Magn Reson 13(5):294–325CrossRef
9.
go back to reference Rooney WD, Springer CS (1991) A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 4(5):209–226PubMedCrossRef Rooney WD, Springer CS (1991) A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 4(5):209–226PubMedCrossRef
10.
go back to reference Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985CrossRef Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985CrossRef
11.
go back to reference Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547PubMedCrossRef Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547PubMedCrossRef
12.
go back to reference Winkler SS, Thomasson DM, Sherwood K, Perman WH (1989) Regional T2 and sodium concentration estimates in the normal human-brain by Na-23 mr imaging at 1.5 T. J Comput Assist Tomogr 13(4):561–566PubMedCrossRef Winkler SS, Thomasson DM, Sherwood K, Perman WH (1989) Regional T2 and sodium concentration estimates in the normal human-brain by Na-23 mr imaging at 1.5 T. J Comput Assist Tomogr 13(4):561–566PubMedCrossRef
13.
go back to reference Bartha R, Menon RS (2004) Long component time constant of Na-23 T*(2) relaxation in healthy human brain. Magn Reson Med 52(2):407–410PubMedCrossRef Bartha R, Menon RS (2004) Long component time constant of Na-23 T*(2) relaxation in healthy human brain. Magn Reson Med 52(2):407–410PubMedCrossRef
14.
go back to reference Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T-2* mapping in human brain at 7 Tesla. Magn Reson Med 62(5):1338–1341PubMedCentralPubMedCrossRef Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T-2* mapping in human brain at 7 Tesla. Magn Reson Med 62(5):1338–1341PubMedCentralPubMedCrossRef
15.
go back to reference Winter PM, Bansal N (2001) Triple-quantum-filtered Na-23 NMR spectroscopy of subcutaneously implanted 9 l gliosarcoma in the rat in the presence of tmdotp5-. J Magn Reson 152(1):70–78PubMedCrossRef Winter PM, Bansal N (2001) Triple-quantum-filtered Na-23 NMR spectroscopy of subcutaneously implanted 9 l gliosarcoma in the rat in the presence of tmdotp5-. J Magn Reson 152(1):70–78PubMedCrossRef
16.
go back to reference Rooney WD, Springer CS (1991) The molecular environment of intracellular sodium—Na-23 NMR relaxation. NMR Biomed 4(5):227–245PubMedCrossRef Rooney WD, Springer CS (1991) The molecular environment of intracellular sodium—Na-23 NMR relaxation. NMR Biomed 4(5):227–245PubMedCrossRef
17.
go back to reference Halle B, Wennerstrom H, Piculell L (1984) Interpretation of counterion spin relaxation in poly-electrolyte solutions. J Phys Chem 88(12):2482–2494CrossRef Halle B, Wennerstrom H, Piculell L (1984) Interpretation of counterion spin relaxation in poly-electrolyte solutions. J Phys Chem 88(12):2482–2494CrossRef
19.
go back to reference Stobbe R, Beaulieu C (2008) Sodium imaging optimization under specific absorption rate constraint. Magn Reson Med 59(2):345–355PubMedCrossRef Stobbe R, Beaulieu C (2008) Sodium imaging optimization under specific absorption rate constraint. Magn Reson Med 59(2):345–355PubMedCrossRef
20.
go back to reference Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62PubMedCrossRef Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62PubMedCrossRef
21.
go back to reference Hancu I, van der Maarel JRC, Boada FE (2000) A model for the dynamics of spins 3/2 in biological media: signal loss during radiofrequency excitation in triple-quantum-filtered sodium MRI. J Magn Reson 147(2):179–191PubMedCrossRef Hancu I, van der Maarel JRC, Boada FE (2000) A model for the dynamics of spins 3/2 in biological media: signal loss during radiofrequency excitation in triple-quantum-filtered sodium MRI. J Magn Reson 147(2):179–191PubMedCrossRef
22.
go back to reference Joseph PM, Summers RM (1987) The flip-angle effect—a method for detection of Na-23 quadrupole splitting in tissue. Magn Reson Med 4(1):67–77PubMedCrossRef Joseph PM, Summers RM (1987) The flip-angle effect—a method for detection of Na-23 quadrupole splitting in tissue. Magn Reson Med 4(1):67–77PubMedCrossRef
23.
go back to reference Watts A, Stobbe RW, Beaulieu C (2011) Signal-to-noise optimization for sodium MRI of the human knee at 4.7 Tesla using steady state. Magn Reson Med 66(3):697–705PubMedCrossRef Watts A, Stobbe RW, Beaulieu C (2011) Signal-to-noise optimization for sodium MRI of the human knee at 4.7 Tesla using steady state. Magn Reson Med 66(3):697–705PubMedCrossRef
24.
go back to reference Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310PubMedCrossRef Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310PubMedCrossRef
25.
go back to reference Tsang A, Stobbe RW, Beaulieu C (2013) Evaluation of b-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7T. J Magn Reson 230C:134–144CrossRef Tsang A, Stobbe RW, Beaulieu C (2013) Evaluation of b-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7T. J Magn Reson 230C:134–144CrossRef
26.
go back to reference Tsang A, Stobbe RW, Beaulieu C (2012) Triple-quantum-filtered sodium imaging of the human brain at 4.7T. Magn Reson Med 67(6):1633–1643PubMedCrossRef Tsang A, Stobbe RW, Beaulieu C (2012) Triple-quantum-filtered sodium imaging of the human brain at 4.7T. Magn Reson Med 67(6):1633–1643PubMedCrossRef
27.
go back to reference Stobbe R, Beaulieu C (2006) Sodium relaxometry: towards the characterization of the sodium NMR environment in the human brain using a novel relaxometry technique. Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, USA, p 3104 Stobbe R, Beaulieu C (2006) Sodium relaxometry: towards the characterization of the sodium NMR environment in the human brain using a novel relaxometry technique. Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, USA, p 3104
28.
go back to reference Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715PubMedCrossRef Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715PubMedCrossRef
29.
go back to reference Stobbe R, Beaulieu C (2008) Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. Magn Reson Med 60(4):981–986PubMedCrossRef Stobbe R, Beaulieu C (2008) Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. Magn Reson Med 60(4):981–986PubMedCrossRef
30.
go back to reference Kharrazian R, Jakob PM (2006) Dynamics of Na-23 during completely balanced steady-state free precession. J Magn Reson 179(1):73–84PubMedCrossRef Kharrazian R, Jakob PM (2006) Dynamics of Na-23 during completely balanced steady-state free precession. J Magn Reson 179(1):73–84PubMedCrossRef
31.
go back to reference Pandey L, Towta S, Hughes DG (1986) NMR pulse response and measurement of the quadrupole coupling-constant of 1 = 3/2 nuclei. J Chem Phys 85(12):6923–6927CrossRef Pandey L, Towta S, Hughes DG (1986) NMR pulse response and measurement of the quadrupole coupling-constant of 1 = 3/2 nuclei. J Chem Phys 85(12):6923–6927CrossRef
32.
go back to reference Stobbe R, Beaulieu C (2009) Sodium ‘invisibility’ in signal quantum sodium imaging of the human brain at high field. Proceedings of the 16th Annual Meeting of ISMRM, Honolulu, Hawaii, USA Stobbe R, Beaulieu C (2009) Sodium ‘invisibility’ in signal quantum sodium imaging of the human brain at high field. Proceedings of the 16th Annual Meeting of ISMRM, Honolulu, Hawaii, USA
33.
go back to reference Reddy R, Bolinger L, Shinnar M, Noyszewski E, Leigh JS (1995) Detection of residual quadrupolar interaction in human skeletal-muscle and brain in vivo via multiple-quantum filtered sodium NMR-spectra. Magn Reson Med 33(1):134–139PubMedCrossRef Reddy R, Bolinger L, Shinnar M, Noyszewski E, Leigh JS (1995) Detection of residual quadrupolar interaction in human skeletal-muscle and brain in vivo via multiple-quantum filtered sodium NMR-spectra. Magn Reson Med 33(1):134–139PubMedCrossRef
34.
go back to reference Laustsen C, Ringgaard S, Pedersen M, Nielsen NC (2010) Quadrupolar-coupling-specific binomial pulse sequences for in vivo Na-23 NMR and MRI. J Magn Reson 206(1):139–146PubMedCrossRef Laustsen C, Ringgaard S, Pedersen M, Nielsen NC (2010) Quadrupolar-coupling-specific binomial pulse sequences for in vivo Na-23 NMR and MRI. J Magn Reson 206(1):139–146PubMedCrossRef
35.
go back to reference Woessner DE, Bansal N (1998) Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. J Magn Reson 133(1):21–35PubMedCrossRef Woessner DE, Bansal N (1998) Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. J Magn Reson 133(1):21–35PubMedCrossRef
36.
go back to reference Van der Maarel JRC (2003) Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis. Concept Magn Reson A 19A(2):97–116 Van der Maarel JRC (2003) Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis. Concept Magn Reson A 19A(2):97–116
38.
go back to reference Mitsuiki M, Mizuno A, Motoki M (1999) Determination of molecular weight of agars and effect of the molecular weight on the glass transition. J Agric Food Chem 47(2):473–478PubMedCrossRef Mitsuiki M, Mizuno A, Motoki M (1999) Determination of molecular weight of agars and effect of the molecular weight on the glass transition. J Agric Food Chem 47(2):473–478PubMedCrossRef
39.
go back to reference ICF Consulting, United States Department of Agriculture (USDA) (2006) Gellan gum handling/processing ICF Consulting, United States Department of Agriculture (USDA) (2006) Gellan gum handling/processing
40.
go back to reference Winter PM, Bansal N (2001) Tmdotp5- as a Na-23 shift reagent for the subcutaneously implanted 9 l gliosarcoma in rats. Magn Reson Med 45(3):436–442PubMedCrossRef Winter PM, Bansal N (2001) Tmdotp5- as a Na-23 shift reagent for the subcutaneously implanted 9 l gliosarcoma in rats. Magn Reson Med 45(3):436–442PubMedCrossRef
41.
go back to reference Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional Na-23 mr imaging study. Radiology 264(3):859–867PubMedCrossRef Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional Na-23 mr imaging study. Radiology 264(3):859–867PubMedCrossRef
Metadata
Title
Exploring and enhancing relaxation-based sodium MRI contrast
Authors
Robert W. Stobbe
Christian Beaulieu
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2014
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-013-0390-7

Other articles of this Issue 1/2014

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2014 Go to the issue