Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 4/2005

01-04-2005 | Otology

Experimental vibratory damage of the inner ear

Authors: Marek Bochnia, Konrad Morgenroth, Wojciech Dziewiszek, Jerzy Kassner

Published in: European Archives of Oto-Rhino-Laryngology | Issue 4/2005

Login to get access

Abstract

The aim of the experiment was to determine the effect of whole-body vibration on the inner ear. The investigations were carried out on 40 guinea pigs, subjected to sinusoidal vibration (10 Hz/5 mm/1.4 g rms) for 1 to 6 months in a noiseless apparatus. Cochlear microphonic measurements were done with a phase-sensitive detection technique for the levels 70, 80 and 90 dB and the frequencies of 0.26, 0.5, 1 and 2 kHz from the apex of the cochlea and for 4 and 8 kHz from the region of the round window. Analysis of 1,440 measurements suggested the possibility of damage appearing in the upper turnings of the cochlea. The subsequent morphological analysis was based on the estimation of the state of the hair cells (a three-degree scale of injury) in a Zeiss DSM 950 scanning microscope and of the structure of the fibers of the acoustic nerve in a Zeiss EM 900 transmission microscope. Vibration-induced changes were seen in all the examined inner ears of the experimental groups. Hair-cell damage was more often seen in the region of the apex, spreading gradually in the direction of the base and from the circumference (outer hair cells of the third row) to the modiolus. The most characteristic vibrational changes of the acoustic nerve fibers occurred in 100% of the examined myelin sheaths and were visible as decreases in their electrodensity. The changes in both the assessed elements of the inner ear appeared simultaneously but independently and were directly connected with the duration of the experiment. The results obtained allow an explanation of the mechanism of hearing loss in persons subjected to whole-body vibration. The damages done to the inner ear structures may cause a worsening of hearing there, especially in the low and medium frequencies.
Literature
1.
go back to reference Chodynicki S, Hermanowicz A (1976) Histochemical changes in Corti’s organ of guinea pigs exposed to vibration and noise (in Polish). Otolaryngol Pol 30:119–124PubMed Chodynicki S, Hermanowicz A (1976) Histochemical changes in Corti’s organ of guinea pigs exposed to vibration and noise (in Polish). Otolaryngol Pol 30:119–124PubMed
2.
go back to reference Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512PubMed Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512PubMed
3.
go back to reference Enin IP (1965) Morphological alterations in the organ of hearing of laboratory animals under the effect of high-parameter vibration and of noise (in Russian). Vestn Otorinolaringol:25–29 Enin IP (1965) Morphological alterations in the organ of hearing of laboratory animals under the effect of high-parameter vibration and of noise (in Russian). Vestn Otorinolaringol:25–29
4.
go back to reference Filipowski M (1978) Effect of mechanical vibration on the microphonic potential in guinea pigs (in Polish). Otolaryngol Pol 32:509–515PubMed Filipowski M (1978) Effect of mechanical vibration on the microphonic potential in guinea pigs (in Polish). Otolaryngol Pol 32:509–515PubMed
5.
go back to reference Gleich O, Wilson S (1993) The diameters of guinea pig auditory nerve fibers: distribution and correlation with spontaneous rate. Hear Res 71:69–79CrossRefPubMed Gleich O, Wilson S (1993) The diameters of guinea pig auditory nerve fibers: distribution and correlation with spontaneous rate. Hear Res 71:69–79CrossRefPubMed
6.
go back to reference Guseev YuM, Skromida GT, Zbirak NP (1978) Histomorphologic changes in the hearing organ of experimental animals under the influence of occupational noise and vibration. Zh Ushn Nos Gorl Bol (in Russian):60–65 Guseev YuM, Skromida GT, Zbirak NP (1978) Histomorphologic changes in the hearing organ of experimental animals under the influence of occupational noise and vibration. Zh Ushn Nos Gorl Bol (in Russian):60–65
7.
go back to reference Hamernik RP, Henderson D, Coling D, Slepecky N (1980) The interaction of whole body vibration and impulse noise. J Acoust Soc Am 67:928–934PubMed Hamernik RP, Henderson D, Coling D, Slepecky N (1980) The interaction of whole body vibration and impulse noise. J Acoust Soc Am 67:928–934PubMed
8.
go back to reference Hermanowicz A (1979) Histochemical changes in the spiral organ of guinea pigs after long-term exposure to noise and vibration (in Polish). Otolaryngol Pol 33:55–61PubMed Hermanowicz A (1979) Histochemical changes in the spiral organ of guinea pigs after long-term exposure to noise and vibration (in Polish). Otolaryngol Pol 33:55–61PubMed
9.
go back to reference Ho ST, Yu HS (1989) Ultrastructural changes of the peripheral nerve induced by vibration: an experimental study. Br J Ind Med 46:157–164PubMed Ho ST, Yu HS (1989) Ultrastructural changes of the peripheral nerve induced by vibration: an experimental study. Br J Ind Med 46:157–164PubMed
10.
go back to reference Hoeffding V, Feldman ML (1988) Degeneration in the cochlear nerve of the rat following cochlear lesions. Brain Res 449:104–115PubMed Hoeffding V, Feldman ML (1988) Degeneration in the cochlear nerve of the rat following cochlear lesions. Brain Res 449:104–115PubMed
11.
go back to reference Iki M (1994) Vibration-induced white finger as a risk factor for hearing loss and postural instability. Nagoya J Med Sci [Suppl 57]:137–145 Iki M (1994) Vibration-induced white finger as a risk factor for hearing loss and postural instability. Nagoya J Med Sci [Suppl 57]:137–145
12.
go back to reference Jauhiainen T, Kohonen A, Tarkanen J, Kaimio M (1969) The effect of whole body vibration on the cochlea. Laryngoscope 79:1950–1955PubMed Jauhiainen T, Kohonen A, Tarkanen J, Kaimio M (1969) The effect of whole body vibration on the cochlea. Laryngoscope 79:1950–1955PubMed
13.
go back to reference Johnsson LG, Hawkins JE Jr (1972) Sensory and neural degeneration with aging, as seen in microdissections of the human inner ear. Ann Otol Rhinol Laryngol 81:179–193PubMed Johnsson LG, Hawkins JE Jr (1972) Sensory and neural degeneration with aging, as seen in microdissections of the human inner ear. Ann Otol Rhinol Laryngol 81:179–193PubMed
14.
go back to reference Lindeman HH, Bredberg G (1972) Scanning electron microscopy of the organ of Corti after intense auditory stimulation: effects on stereocilia and cuticular surface of hair cells. Arch Klin Exp Ohr Nas Kehlkopfheilk 203:1–15 Lindeman HH, Bredberg G (1972) Scanning electron microscopy of the organ of Corti after intense auditory stimulation: effects on stereocilia and cuticular surface of hair cells. Arch Klin Exp Ohr Nas Kehlkopfheilk 203:1–15
15.
go back to reference Lundborg G, Dahlin LB, Danielsen N, Hansson HA, Necking LE, Pyykkö I (1987) Intraneural edema following exposure to vibration. Scand J Work Environ Health 13:326–329PubMed Lundborg G, Dahlin LB, Danielsen N, Hansson HA, Necking LE, Pyykkö I (1987) Intraneural edema following exposure to vibration. Scand J Work Environ Health 13:326–329PubMed
16.
go back to reference McGinn MD, Faddis BT (1987) Auditory experience affects degeneration of the ventral cochlear nucleus in mongolian gerbils. Hear Res 31:235–244CrossRefPubMed McGinn MD, Faddis BT (1987) Auditory experience affects degeneration of the ventral cochlear nucleus in mongolian gerbils. Hear Res 31:235–244CrossRefPubMed
17.
go back to reference Michalski W, Pospiech L, Dziewiszek W, Bochnia M (1997) The device for measurement of microphonic potentials of inner ear (in Polish). BUP 25:9 Michalski W, Pospiech L, Dziewiszek W, Bochnia M (1997) The device for measurement of microphonic potentials of inner ear (in Polish). BUP 25:9
18.
go back to reference Nekhoroshev AS (1990) Combined effects of noise and vibration on the cells of the hearing and vestibular organs (in Russian). Vestn Otorinolaringol:27–30 Nekhoroshev AS (1990) Combined effects of noise and vibration on the cells of the hearing and vestibular organs (in Russian). Vestn Otorinolaringol:27–30
19.
go back to reference Palmer KT, Griffin MJ, Bendall H, Pannett B, Coggon D (2000) Prevalence and pattern of occupational exposure to whole body vibration in Great Britain: findings from a national survey. Occupat Environ Med 57:229–236CrossRef Palmer KT, Griffin MJ, Bendall H, Pannett B, Coggon D (2000) Prevalence and pattern of occupational exposure to whole body vibration in Great Britain: findings from a national survey. Occupat Environ Med 57:229–236CrossRef
20.
go back to reference Palmer KT, Griffin MJ, Bendall H, Pannett B, Coggon D (2000) Prevalence and pattern of occupational exposure to hand transmitted vibration in Great Britain: findings from a national survey (comment). Occupat Environ Med 57:218–228CrossRef Palmer KT, Griffin MJ, Bendall H, Pannett B, Coggon D (2000) Prevalence and pattern of occupational exposure to hand transmitted vibration in Great Britain: findings from a national survey (comment). Occupat Environ Med 57:218–228CrossRef
21.
go back to reference Palmer KT, Griffin MJ, Syddall H, Pannett B, Cooper C, Coggon D (2001) Risk of hand-arm vibration syndrome according to occupation and sources of exposure to hand-transmitted vibration: A national survey. Am J Indust Med 39:389–396CrossRef Palmer KT, Griffin MJ, Syddall H, Pannett B, Cooper C, Coggon D (2001) Risk of hand-arm vibration syndrome according to occupation and sources of exposure to hand-transmitted vibration: A national survey. Am J Indust Med 39:389–396CrossRef
22.
go back to reference Palmer KT, Griffin MJ, Syddall HE, Pannett B, Cooper C, Coggon D (2002) Raynaud’s phenomenon, vibration induced white finger, and difficulties in hearing. Occupat Environ Med 59:640–642CrossRef Palmer KT, Griffin MJ, Syddall HE, Pannett B, Cooper C, Coggon D (2002) Raynaud’s phenomenon, vibration induced white finger, and difficulties in hearing. Occupat Environ Med 59:640–642CrossRef
23.
go back to reference Pyykko I, Pekkarinen J, Starck J (1987) Sensory-neural hearing loss during combined noise and vibration exposure. An analysis of risk factors. Int Arch Occup Environ Health 59:439–454PubMed Pyykko I, Pekkarinen J, Starck J (1987) Sensory-neural hearing loss during combined noise and vibration exposure. An analysis of risk factors. Int Arch Occup Environ Health 59:439–454PubMed
24.
go back to reference Reiss G (1992) Atypical cells in the normal guinea pig organ of Corti as revealed by micromanipulation in SEM. Microsc Res Tech 20:288–297PubMed Reiss G (1992) Atypical cells in the normal guinea pig organ of Corti as revealed by micromanipulation in SEM. Microsc Res Tech 20:288–297PubMed
25.
go back to reference Rogowski M, Chodynicki S (1987) The effect of vibration and gentamicin on hearing organ in guinea pigs (in German). HNO Prax 12:219–223 Rogowski M, Chodynicki S (1987) The effect of vibration and gentamicin on hearing organ in guinea pigs (in German). HNO Prax 12:219–223
26.
go back to reference Seidel H, Heide R (1986) Long-term effects of whole-body vibration: a critical survey of the literature. Int Arch Occup Environ Health 58:1–26PubMed Seidel H, Heide R (1986) Long-term effects of whole-body vibration: a critical survey of the literature. Int Arch Occup Environ Health 58:1–26PubMed
27.
go back to reference Sliwinska-Kowalska M, Sulkowski W, Rydzynski K, Jedlinska (1993) U Hearing loss caused by noise—functional and pathomorphological study in guinea pigs (in Polish). Otolaryngol Pol [Suppl 14]:445–452 Sliwinska-Kowalska M, Sulkowski W, Rydzynski K, Jedlinska (1993) U Hearing loss caused by noise—functional and pathomorphological study in guinea pigs (in Polish). Otolaryngol Pol [Suppl 14]:445–452
28.
go back to reference Suzuka Y, Schuknecht HF (1988) Retrograde cochlear neuronal degeneration in human subjects. Acta Otolaryngol (Stockh) [Suppl 450]:1–20 Suzuka Y, Schuknecht HF (1988) Retrograde cochlear neuronal degeneration in human subjects. Acta Otolaryngol (Stockh) [Suppl 450]:1–20
29.
go back to reference Taylor W, Pelmear PL (1990) The hand-arm vibration syndrome: an update. Br J Ind Med 47:577–579PubMed Taylor W, Pelmear PL (1990) The hand-arm vibration syndrome: an update. Br J Ind Med 47:577–579PubMed
30.
go back to reference Temkin YaS (1970) The achievements of soviet otorhinolaryngology in the study and prophylaxis of occupational diseases (in Russian). Vestn Otorinolaryngol:119–127 Temkin YaS (1970) The achievements of soviet otorhinolaryngology in the study and prophylaxis of occupational diseases (in Russian). Vestn Otorinolaryngol:119–127
31.
go back to reference Thorne PR, Duncan CE, Gavin JB (1986) The pathogenesis of stereocilia abnormalities in acoustic trauma. Hear Res 21:41–49CrossRefPubMed Thorne PR, Duncan CE, Gavin JB (1986) The pathogenesis of stereocilia abnormalities in acoustic trauma. Hear Res 21:41–49CrossRefPubMed
32.
go back to reference Úlehlová L (1973) Normal cellular pattern of the organ of Corti in the guinea pig. Arch Klin Exp Ohr Nas Kehlkopfheilk 204:321–330 Úlehlová L (1973) Normal cellular pattern of the organ of Corti in the guinea pig. Arch Klin Exp Ohr Nas Kehlkopfheilk 204:321–330
33.
go back to reference Wasserman DE (1994) Vibration exposure and prevention in the United States. Nagoya J Med Sci [Suppl 57]:211–218 Wasserman DE (1994) Vibration exposure and prevention in the United States. Nagoya J Med Sci [Suppl 57]:211–218
34.
go back to reference Wender M, Adamczewska-Gancerzewicz Z, Stanisławska J, Pankrac J, Talkowska D, Grochowalska A (1987) Effect of acute hypoxia on myelin lipids. Neuropatol Pol 25:107–115PubMed Wender M, Adamczewska-Gancerzewicz Z, Stanisławska J, Pankrac J, Talkowska D, Grochowalska A (1987) Effect of acute hypoxia on myelin lipids. Neuropatol Pol 25:107–115PubMed
35.
go back to reference Ylikoski J, Collan Y, Palva T (1978) Pathologic features of the cochlear nerve in profound deafness. Arch Otolaryngol Head Neck Surg 104:202–207 Ylikoski J, Collan Y, Palva T (1978) Pathologic features of the cochlear nerve in profound deafness. Arch Otolaryngol Head Neck Surg 104:202–207
36.
go back to reference Ylikoski J, Savolainen S (1984) The cochlear nerve in various forms of deafness. Acta Otolaryngol (Stockh) 98:418–427 Ylikoski J, Savolainen S (1984) The cochlear nerve in various forms of deafness. Acta Otolaryngol (Stockh) 98:418–427
Metadata
Title
Experimental vibratory damage of the inner ear
Authors
Marek Bochnia
Konrad Morgenroth
Wojciech Dziewiszek
Jerzy Kassner
Publication date
01-04-2005
Publisher
Springer-Verlag
Published in
European Archives of Oto-Rhino-Laryngology / Issue 4/2005
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-004-0799-8

Other articles of this Issue 4/2005

European Archives of Oto-Rhino-Laryngology 4/2005 Go to the issue