Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2024

Open Access 01-12-2024 | Research

Experimental evaluation of the impact of sEMG interfaces in enhancing embodiment of virtual myoelectric prostheses

Authors: Theophil Spiegeler Castañeda, Mathilde Connan, Patricia Capsi-Morales, Philipp Beckerle, Claudio Castellini, Cristina Piazza

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2024

Login to get access

Abstract

Introduction

Despite recent technological advances that have led to sophisticated bionic prostheses, attaining embodied solutions still remains a challenge. Recently, the investigation of prosthetic embodiment has become a topic of interest in the research community, which deals with enhancing the perception of artificial limbs as part of users’ own body. Surface electromyography (sEMG) interfaces have emerged as a promising technology for enhancing upper-limb prosthetic control. However, little is known about the impact of these sEMG interfaces on users’ experience regarding embodiment and their interaction with different functional levels.

Methods

To investigate this aspect, a comparison is conducted among sEMG configurations with different number of sensors (4 and 16 channels) and different time delay. We used a regression algorithm to simultaneously control hand closing/opening and forearm pronation/supination in an immersive virtual reality environment. The experimental evaluation includes 24 able-bodied subjects and one prosthesis user. We assess functionality with the Target Achievement Control test, and the sense of embodiment with a metric for the users perception of self-location, together with a standard survey.

Results

Among the four tested conditions, results proved a higher subjective embodiment when participants used sEMG interfaces employing an increased number of sensors. Regarding functionality, significant improvement over time is observed in the same conditions, independently of the time delay implemented.

Conclusions

Our work indicates that a sufficient number of sEMG sensors improves both, functional and subjective embodiment outcomes. This prompts discussion regarding the potential relationship between these two aspects present in bionic integration. Similar embodiment outcomes are observed in the prosthesis user, showing also differences due to the time delay, and demonstrating the influence of sEMG interfaces on the sense of agency.
Literature
1.
go back to reference Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, et al. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10:209.PubMedPubMedCentralCrossRef Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, et al. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10:209.PubMedPubMedCentralCrossRef
2.
go back to reference Mendez V, Iberite F, Shokur S, Micera S. Current solutions and future trends for robotic prosthetic hands. Annu Rev Control Robot Auton Syst. 2021;4:595–627.CrossRef Mendez V, Iberite F, Shokur S, Micera S. Current solutions and future trends for robotic prosthetic hands. Annu Rev Control Robot Auton Syst. 2021;4:595–627.CrossRef
3.
go back to reference Bekrater-Bodmann R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front Neurorobot. 2021;14: 604376.PubMedPubMedCentralCrossRef Bekrater-Bodmann R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front Neurorobot. 2021;14: 604376.PubMedPubMedCentralCrossRef
4.
go back to reference Gouzien A, De Vignemont F, Touillet A, Martinet N, De Graaf J, Jarrasse N, et al. Reachability and the sense of embodiment in amputees using prostheses. Sci Rep. 2017;7(1):1–10.CrossRef Gouzien A, De Vignemont F, Touillet A, Martinet N, De Graaf J, Jarrasse N, et al. Reachability and the sense of embodiment in amputees using prostheses. Sci Rep. 2017;7(1):1–10.CrossRef
5.
go back to reference Farina D, Vujaklija I, Brånemark R, Bull AM, Dietl H, Graimann B, et al. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng. 2021:1-13. Farina D, Vujaklija I, Brånemark R, Bull AM, Dietl H, Graimann B, et al. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng. 2021:1-13.
6.
go back to reference Zbinden J, Lendaro E, Ortiz-Catalan M. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms. J Neuroeng Rehabil. 2022;19(1):37.PubMedPubMedCentralCrossRef Zbinden J, Lendaro E, Ortiz-Catalan M. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms. J Neuroeng Rehabil. 2022;19(1):37.PubMedPubMedCentralCrossRef
7.
go back to reference Zbinden J, Lendaro E, Ortiz-Catalan M. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research. J Neuroeng Rehabil. 2022;19(1):122.PubMedPubMedCentralCrossRef Zbinden J, Lendaro E, Ortiz-Catalan M. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research. J Neuroeng Rehabil. 2022;19(1):122.PubMedPubMedCentralCrossRef
8.
9.
go back to reference Scheme E, Englehart K. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev. 2011;48(6). Scheme E, Englehart K. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev. 2011;48(6).
10.
go back to reference Castellini C, Van Der Smagt P. Surface EMG in advanced hand prosthetics. Biol Cybern. 2009;100:35–47.PubMedCrossRef Castellini C, Van Der Smagt P. Surface EMG in advanced hand prosthetics. Biol Cybern. 2009;100:35–47.PubMedCrossRef
11.
go back to reference Muceli S, Farina D. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans Neural Syst Rehabil Eng. 2011;20(3):371–8.PubMedCrossRef Muceli S, Farina D. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans Neural Syst Rehabil Eng. 2011;20(3):371–8.PubMedCrossRef
12.
go back to reference Merletti R, Holobar A, Farina D. Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol. 2008;18(6):879–90.PubMedCrossRef Merletti R, Holobar A, Farina D. Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol. 2008;18(6):879–90.PubMedCrossRef
13.
go back to reference Capsi-Morales P, Piazza C, Catalano MG, Grioli G, Schiavon L, Fiaschi E, et al. Comparison between rigid and soft poly-articulated prosthetic hands in non-expert myo-electric users shows advantages of soft robotics. Sci Rep. 2021;11(1):1–15.CrossRef Capsi-Morales P, Piazza C, Catalano MG, Grioli G, Schiavon L, Fiaschi E, et al. Comparison between rigid and soft poly-articulated prosthetic hands in non-expert myo-electric users shows advantages of soft robotics. Sci Rep. 2021;11(1):1–15.CrossRef
15.
go back to reference Woodward RB, Hargrove LJ. Adapting myoelectric control in real-time using a virtual environment. J Neuroeng Rehabil. 2019;16(1):1–12.CrossRef Woodward RB, Hargrove LJ. Adapting myoelectric control in real-time using a virtual environment. J Neuroeng Rehabil. 2019;16(1):1–12.CrossRef
16.
go back to reference Murray CD. Embodiment and prosthetics. In: Psychoprosthetics. Springer; 2008. p. 119–29. Murray CD. Embodiment and prosthetics. In: Psychoprosthetics. Springer; 2008. p. 119–29.
17.
18.
go back to reference Page DM, George JA, Kluger DT, Duncan C, Wendelken S, Davis T, et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci. 2018;12:352.PubMedPubMedCentralCrossRef Page DM, George JA, Kluger DT, Duncan C, Wendelken S, Davis T, et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci. 2018;12:352.PubMedPubMedCentralCrossRef
19.
go back to reference Lopez C, Halje P, Blanke O. Body ownership and embodiment: vestibular and multisensory mechanisms. Neurophysiol Clin. 2008;38:149–61.PubMedCrossRef Lopez C, Halje P, Blanke O. Body ownership and embodiment: vestibular and multisensory mechanisms. Neurophysiol Clin. 2008;38:149–61.PubMedCrossRef
20.
go back to reference Arzy S, Thut G, Mohr C, Michel CM, Blanke O. Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J Neurosci. 2006;26(31):8074–81.PubMedPubMedCentralCrossRef Arzy S, Thut G, Mohr C, Michel CM, Blanke O. Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J Neurosci. 2006;26(31):8074–81.PubMedPubMedCentralCrossRef
21.
go back to reference Newport R, Preston C. Pulling the finger off disrupts agency, embodiment and peripersonal space. Perception. 2010;39(9):1296–8 (PMID: 21125957).PubMedCrossRef Newport R, Preston C. Pulling the finger off disrupts agency, embodiment and peripersonal space. Perception. 2010;39(9):1296–8 (PMID: 21125957).PubMedCrossRef
22.
go back to reference Kilteni K, Groten R, Slater M. The sense of embodiment in virtual reality. Presence Teleoperators Virtual Environ. 2012;21(4):373–87.CrossRef Kilteni K, Groten R, Slater M. The sense of embodiment in virtual reality. Presence Teleoperators Virtual Environ. 2012;21(4):373–87.CrossRef
23.
go back to reference Beckerle P, Castellini C, Lenggenhager B. Robotic interfaces for cognitive psychology and embodiment research: a research roadmap. WIREs Cognitive Science. 2019;10(2). Beckerle P, Castellini C, Lenggenhager B. Robotic interfaces for cognitive psychology and embodiment research: a research roadmap. WIREs Cognitive Science. 2019;10(2).
24.
go back to reference Christ O, Reiner M. Perspectives and possible applications of the rubber hand and virtual hand illusion in non-invasive rehabilitation: technological improvements and their consequences. Neurosci Biobehav Rev. 2014;44:33–44.PubMedCrossRef Christ O, Reiner M. Perspectives and possible applications of the rubber hand and virtual hand illusion in non-invasive rehabilitation: technological improvements and their consequences. Neurosci Biobehav Rev. 2014;44:33–44.PubMedCrossRef
25.
go back to reference Tsay A, Savage G, Allen TJ, Proske U. Limb position sense, proprioceptive drift and muscle thixotropy at the human elbow joint: proprioceptive drift at the human elbow joint. J Physiol. 2014;592(12):2679–94.PubMedPubMedCentralCrossRef Tsay A, Savage G, Allen TJ, Proske U. Limb position sense, proprioceptive drift and muscle thixotropy at the human elbow joint: proprioceptive drift at the human elbow joint. J Physiol. 2014;592(12):2679–94.PubMedPubMedCentralCrossRef
26.
27.
go back to reference Fröhner J, Salvietti G, Beckerle P, Prattichizzo D. Can wearable haptic devices foster the embodiment of virtual limbs? IEEE Trans Haptics. 2018;12(3):339–49.PubMedCrossRef Fröhner J, Salvietti G, Beckerle P, Prattichizzo D. Can wearable haptic devices foster the embodiment of virtual limbs? IEEE Trans Haptics. 2018;12(3):339–49.PubMedCrossRef
28.
go back to reference Fribourg R, Argelaguet F, Hoyet L, Lecuyer A. Studying the Sense of Embodiment in VR Shared Experiences. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE;. p. 273-80. Fribourg R, Argelaguet F, Hoyet L, Lecuyer A. Studying the Sense of Embodiment in VR Shared Experiences. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE;. p. 273-80.
29.
go back to reference Bovet S, Debarba HG, Herbelin B, Molla E, Boulic R. The critical role of self-contact for embodiment in virtual reality. IEEE Trans Visual Comput Graphics. 2018;24(4):1428–36.CrossRef Bovet S, Debarba HG, Herbelin B, Molla E, Boulic R. The critical role of self-contact for embodiment in virtual reality. IEEE Trans Visual Comput Graphics. 2018;24(4):1428–36.CrossRef
30.
go back to reference Wenk N, Penalver-Andres J, Buetler KA, Nef T, Müri RM, Marchal-Crespo L. Effect of immersive visualization technologies on cognitive load, motivation, usability, and embodiment. Virtual Reality. 2021. Wenk N, Penalver-Andres J, Buetler KA, Nef T, Müri RM, Marchal-Crespo L. Effect of immersive visualization technologies on cognitive load, motivation, usability, and embodiment. Virtual Reality. 2021.
31.
go back to reference Engdahl SM, Meehan SK, Gates DH. Differential experiences of embodiment between body-powered and myoelectric prosthesis users. Sci Rep. 2020;10(1):1–10.CrossRef Engdahl SM, Meehan SK, Gates DH. Differential experiences of embodiment between body-powered and myoelectric prosthesis users. Sci Rep. 2020;10(1):1–10.CrossRef
32.
go back to reference Fröhner J, Beckerle P, Endo S, Hirche S. An embodiment paradigm in evaluation of human-in-the-loop control. IFAC-PapersOnLine. 2019;51(34):104–9.CrossRef Fröhner J, Beckerle P, Endo S, Hirche S. An embodiment paradigm in evaluation of human-in-the-loop control. IFAC-PapersOnLine. 2019;51(34):104–9.CrossRef
33.
go back to reference Simon AM, Hargrove LJ, Lock BA. Kuiken TA. The Target Achievement Control Test: evaluating real-time myoelectric pattern recognition control of a multifunctional upper-limb prosthesis; 2014. p. 17. Simon AM, Hargrove LJ, Lock BA. Kuiken TA. The Target Achievement Control Test: evaluating real-time myoelectric pattern recognition control of a multifunctional upper-limb prosthesis; 2014. p. 17.
34.
go back to reference Longo MR, Schüür F, Kammers MPM, Tsakiris M, Haggard P. What is embodiment? A psychometric approach. Cognition. 2008;107(3):978–98.PubMedCrossRef Longo MR, Schüür F, Kammers MPM, Tsakiris M, Haggard P. What is embodiment? A psychometric approach. Cognition. 2008;107(3):978–98.PubMedCrossRef
35.
go back to reference Nowak M, Vujaklija I, Sturma A, Castellini C, Farina D. Simultaneous and proportional real-time myocontrol of up to three degrees of freedom of the wrist and hand. IEEE Trans Biomed Eng. 2022. Nowak M, Vujaklija I, Sturma A, Castellini C, Farina D. Simultaneous and proportional real-time myocontrol of up to three degrees of freedom of the wrist and hand. IEEE Trans Biomed Eng. 2022.
36.
go back to reference Smith LH, Hargrove LJ, Lock BA, Kuiken TA. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng. 2011;19(2):186–92.PubMedCrossRef Smith LH, Hargrove LJ, Lock BA, Kuiken TA. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng. 2011;19(2):186–92.PubMedCrossRef
37.
go back to reference Gijsberts A, Bohra R, Sierra González D, Werner A, Nowak M, Caputo B, et al. Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Front Neurorobotics. 2014:8. Gijsberts A, Bohra R, Sierra González D, Werner A, Nowak M, Caputo B, et al. Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Front Neurorobotics. 2014:8.
38.
go back to reference Strazzulla I, Nowak M, Controzzi M, Cipriani C, Castellini C. Online bimanual manipulation using surface electromyography and incremental learning. IEEE Trans Neural Syst Rehabil Eng. 2016;25(3):227–34.PubMedCrossRef Strazzulla I, Nowak M, Controzzi M, Cipriani C, Castellini C. Online bimanual manipulation using surface electromyography and incremental learning. IEEE Trans Neural Syst Rehabil Eng. 2016;25(3):227–34.PubMedCrossRef
39.
go back to reference Nissler C, Nowak M, Connan M, Büttner S, Vogel J, Kossyk I, et al. Vita-an everyday virtual reality setup for prosthetics and upper-limb rehabilitation. J Neural Eng. 2019;16(2): 026039.PubMedCrossRef Nissler C, Nowak M, Connan M, Büttner S, Vogel J, Kossyk I, et al. Vita-an everyday virtual reality setup for prosthetics and upper-limb rehabilitation. J Neural Eng. 2019;16(2): 026039.PubMedCrossRef
40.
go back to reference Jaeger L, Baptista RS, Basla C, Capsi-Morales P, Kim YK, Nakajima S, et al. How the CYBATHLON competition has advanced assistive technologies. Annu Rev Control Robot Auton Syst. 2023;6:447–76.CrossRef Jaeger L, Baptista RS, Basla C, Capsi-Morales P, Kim YK, Nakajima S, et al. How the CYBATHLON competition has advanced assistive technologies. Annu Rev Control Robot Auton Syst. 2023;6:447–76.CrossRef
41.
go back to reference Tsakiris M, Haggard P. The rubber hand illusion revisited: visuotactile integration and self-attribution. J Exp Psychol Hum Percept Perform. 2005;31(1):80.PubMedCrossRef Tsakiris M, Haggard P. The rubber hand illusion revisited: visuotactile integration and self-attribution. J Exp Psychol Hum Percept Perform. 2005;31(1):80.PubMedCrossRef
42.
go back to reference Kammers MP, de Vignemont F, Verhagen L, Dijkerman HC. The rubber hand illusion in action. Neuropsychologia. 2009;47(1):204–11.PubMedCrossRef Kammers MP, de Vignemont F, Verhagen L, Dijkerman HC. The rubber hand illusion in action. Neuropsychologia. 2009;47(1):204–11.PubMedCrossRef
43.
go back to reference Davies AMA, White RC, Thew G, Aimola NM, Davies M. Visual capture of action, experience of ownership, and the illusion of self-touch: a new rubber hand paradigm. Perception. 2010;39(6):830–8.PubMedCrossRef Davies AMA, White RC, Thew G, Aimola NM, Davies M. Visual capture of action, experience of ownership, and the illusion of self-touch: a new rubber hand paradigm. Perception. 2010;39(6):830–8.PubMedCrossRef
44.
go back to reference Jsselsteijn WA, de Kort YAW, Haans A. Is this my hand I see before me? The rubber hand illusion in reality, virtual reality, and mixed reality. Presence Teleoperators Virtual Environ. 2006;15(4):455–64.CrossRef Jsselsteijn WA, de Kort YAW, Haans A. Is this my hand I see before me? The rubber hand illusion in reality, virtual reality, and mixed reality. Presence Teleoperators Virtual Environ. 2006;15(4):455–64.CrossRef
45.
go back to reference Kammers MPM, de Vignemont F, Verhagen L, Dijkerman HC. The rubber hand illusion in action. Neuropsychologia. 2009;47(1):204–11.PubMedCrossRef Kammers MPM, de Vignemont F, Verhagen L, Dijkerman HC. The rubber hand illusion in action. Neuropsychologia. 2009;47(1):204–11.PubMedCrossRef
46.
go back to reference Rohde M, Di Luca M, Ernst MO. The rubber hand illusion: feeling of ownership and proprioceptive drift do not go hand in hand. PLOS ONE. 2011;6(6):1–9.CrossRef Rohde M, Di Luca M, Ernst MO. The rubber hand illusion: feeling of ownership and proprioceptive drift do not go hand in hand. PLOS ONE. 2011;6(6):1–9.CrossRef
47.
go back to reference Yuan Y, Steed A, Is the rubber hand illusion induced by immersive virtual reality? In IEEE Virtual Reality Conference (VR). Boston, MA, USA: IEEE. 2010;2010:95–102. Yuan Y, Steed A, Is the rubber hand illusion induced by immersive virtual reality? In IEEE Virtual Reality Conference (VR). Boston, MA, USA: IEEE. 2010;2010:95–102.
48.
go back to reference Romano D, Maravita A, Perugini M. Psychometric properties of the embodiment scale for the rubber hand illusion and its relation with individual differences. Sci Rep. 2021;11(1):5029.PubMedPubMedCentralCrossRef Romano D, Maravita A, Perugini M. Psychometric properties of the embodiment scale for the rubber hand illusion and its relation with individual differences. Sci Rep. 2021;11(1):5029.PubMedPubMedCentralCrossRef
49.
go back to reference Fougner A, Stavdahl O, Kyberd PJ, Losier YG, Parker PA. Control of upper limb prostheses: terminology and proportional myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):663–77.PubMedCrossRef Fougner A, Stavdahl O, Kyberd PJ, Losier YG, Parker PA. Control of upper limb prostheses: terminology and proportional myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):663–77.PubMedCrossRef
Metadata
Title
Experimental evaluation of the impact of sEMG interfaces in enhancing embodiment of virtual myoelectric prostheses
Authors
Theophil Spiegeler Castañeda
Mathilde Connan
Patricia Capsi-Morales
Philipp Beckerle
Claudio Castellini
Cristina Piazza
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2024
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-024-01352-7

Other articles of this Issue 1/2024

Journal of NeuroEngineering and Rehabilitation 1/2024 Go to the issue