Skip to main content
Top
Published in: Sleep and Biological Rhythms 4/2017

01-10-2017 | Review Article

Exosomes, blood–brain barrier, and cognitive dysfunction in pediatric sleep apnea

Authors: Leila Kheirandish-Gozal, Abdelnaby Khalyfa, David Gozal

Published in: Sleep and Biological Rhythms | Issue 4/2017

Login to get access

Abstract

Obstructive sleep apnea is a relatively prevalent condition in children, usually related to enlarged upper airway lymphadenoid tissues, and further aggravated by concurrent obesity. Similar to adults, children with sleep-disordered breathing (SDB) are at increased risk for developing end-organ morbidities usually encompassing cardiometabolic and neurobehavioral and cognitive functions. Although the probability of such end-organ morbidities increases with the severity of SDB, the proportion of unaffected children is still high in very severe cases, thereby prompting exploration of the mechanism underlying such divergent phenotypes as potential biomarkers or therapeutic targets. In this context, we here describe a hypothetical framework, whereby SDB leads to release of circulating exosomes, and their cargo will differ in patients with and without neurocognitive deficits. Furthermore, we propose that exosomes of patients with SDB and measurable neurocognitive alterations will readily disrupt the blood brain barrier (BBB). Such BBB disruption then mediates the cascade of pathophysiological events in vulnerable brain regions within the CNS, ultimately leading to gray matter losses and disrupted neural networks in regions underlying typically affected functions such as attention, executive, and memory. Thus, exosomal cargo may not only provide biomarker indicators of neurocognitive risk in children suffering from SDB, but also guide putative therapeutic targets aimed at preventing or palliating such important morbidity.
Literature
1.
go back to reference Nandalike K, Shifteh K, Sin S, Strauss T, Stakofsky A, Gonik N, Bent J, Parikh SR, Bassila M, Nikova M, Muzumdar H, Arens R. Adenotonsillectomy in obese children with obstructive sleep apnea syndrome: magnetic resonance imaging findings and considerations. Sleep. 2013;36(6):841–7.CrossRefPubMedPubMedCentral Nandalike K, Shifteh K, Sin S, Strauss T, Stakofsky A, Gonik N, Bent J, Parikh SR, Bassila M, Nikova M, Muzumdar H, Arens R. Adenotonsillectomy in obese children with obstructive sleep apnea syndrome: magnetic resonance imaging findings and considerations. Sleep. 2013;36(6):841–7.CrossRefPubMedPubMedCentral
2.
go back to reference Arens R, Sin S, Nandalike K, Rieder J, Khan UI, Freeman K, Wylie-Rosett J, Lipton ML, Wootton DM, McDonough JM, Shifteh K. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2011;183(6):782–7.CrossRefPubMed Arens R, Sin S, Nandalike K, Rieder J, Khan UI, Freeman K, Wylie-Rosett J, Lipton ML, Wootton DM, McDonough JM, Shifteh K. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2011;183(6):782–7.CrossRefPubMed
3.
go back to reference Arens R, Muzumdar H. Childhood obesity and obstructive sleep apnea syndrome. J Appl Physiol (1985). 2010;108(2):436–44.CrossRef Arens R, Muzumdar H. Childhood obesity and obstructive sleep apnea syndrome. J Appl Physiol (1985). 2010;108(2):436–44.CrossRef
4.
go back to reference Arens R, Marcus CL. Pathophysiology of upper airway obstruction: a developmental perspective. Sleep. 2004;27(5):997–1019.CrossRefPubMed Arens R, Marcus CL. Pathophysiology of upper airway obstruction: a developmental perspective. Sleep. 2004;27(5):997–1019.CrossRefPubMed
5.
go back to reference Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, Schechter MS, Ward SD, Sheldon SH, Shiffman RN, Lehmann C, Spruyt K, American Academy of Pediatrics. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130(3):e714–55.CrossRefPubMed Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, Schechter MS, Ward SD, Sheldon SH, Shiffman RN, Lehmann C, Spruyt K, American Academy of Pediatrics. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130(3):e714–55.CrossRefPubMed
6.
go back to reference Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Spruyt K. Neurocognitive and endothelial dysfunction in children with obstructive sleep apnea. Pediatrics. 2010;126(5):e1161–7.CrossRefPubMed Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Spruyt K. Neurocognitive and endothelial dysfunction in children with obstructive sleep apnea. Pediatrics. 2010;126(5):e1161–7.CrossRefPubMed
7.
go back to reference Tauman R, Gozal D. Obstructive sleep apnea syndrome in children. Expert Rev Respir Med. 2011;5(3):425–40.CrossRefPubMed Tauman R, Gozal D. Obstructive sleep apnea syndrome in children. Expert Rev Respir Med. 2011;5(3):425–40.CrossRefPubMed
8.
go back to reference Gozal D, Kheirandish-Gozal L. The multiple challenges of obstructive sleep apnea in children: morbidity and treatment. Curr Opin Pediatr. 2008;20(6):654–8.CrossRefPubMed Gozal D, Kheirandish-Gozal L. The multiple challenges of obstructive sleep apnea in children: morbidity and treatment. Curr Opin Pediatr. 2008;20(6):654–8.CrossRefPubMed
9.
10.
go back to reference Gozal D, Kheirandish-Gozal L. Neurocognitive and behavioral morbidity in children with sleep disorders. Curr Opin Pulm Med. 2007;13(6):505–9.CrossRefPubMed Gozal D, Kheirandish-Gozal L. Neurocognitive and behavioral morbidity in children with sleep disorders. Curr Opin Pulm Med. 2007;13(6):505–9.CrossRefPubMed
11.
go back to reference Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med. 2008;177(4):369–75.CrossRefPubMed Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med. 2008;177(4):369–75.CrossRefPubMed
12.
go back to reference Gozal D, Kheirandish L. Oxidant stress and inflammation in the snoring child: confluent pathways to upper airway pathogenesis and end-organ morbidity. Sleep Med Rev. 2006;10(2):83–96.CrossRefPubMed Gozal D, Kheirandish L. Oxidant stress and inflammation in the snoring child: confluent pathways to upper airway pathogenesis and end-organ morbidity. Sleep Med Rev. 2006;10(2):83–96.CrossRefPubMed
13.
go back to reference Brunetti L, Francavilla R, Scicchitano P, Tranchino V, Loscialpo M, Gesualdo M, Zito A, Fornarelli F, Sassara M, Giordano P, Miniello VL, Ciccone MM. Impact of sleep respiratory disorders on endothelial function in children. Sci World J. 2013;2013:719456.CrossRef Brunetti L, Francavilla R, Scicchitano P, Tranchino V, Loscialpo M, Gesualdo M, Zito A, Fornarelli F, Sassara M, Giordano P, Miniello VL, Ciccone MM. Impact of sleep respiratory disorders on endothelial function in children. Sci World J. 2013;2013:719456.CrossRef
14.
go back to reference Van Eyck A, Van Hoorenbeeck K, De Winter BY, Ramet J, Van Gaal L, De Backer W, Verhulst SL. Sleep-disordered breathing and C-reactive protein in obese children and adolescents. Sleep Breath. 2014;18(2):335–40.PubMed Van Eyck A, Van Hoorenbeeck K, De Winter BY, Ramet J, Van Gaal L, De Backer W, Verhulst SL. Sleep-disordered breathing and C-reactive protein in obese children and adolescents. Sleep Breath. 2014;18(2):335–40.PubMed
15.
go back to reference Kheirandish-Gozal L, Etzioni T, Bhattacharjee R, Tan HL, Samiei A, Molero Ramirez H, Abu Eta B, Pillar G. Obstructive sleep apnea in children is associated with severity-dependent deterioration in overnight endothelial function. Sleep Med. 2013;14(6):526–31.CrossRefPubMed Kheirandish-Gozal L, Etzioni T, Bhattacharjee R, Tan HL, Samiei A, Molero Ramirez H, Abu Eta B, Pillar G. Obstructive sleep apnea in children is associated with severity-dependent deterioration in overnight endothelial function. Sleep Med. 2013;14(6):526–31.CrossRefPubMed
16.
go back to reference Tirsi A, Duong M, Tsui W, Lee C, Convit A. Retinal vessel abnormalities as a possible biomarker of brain volume loss in obese adolescents. Obesity (Silver Spring). 2013;21(12):E577–85.CrossRefPubMedPubMedCentral Tirsi A, Duong M, Tsui W, Lee C, Convit A. Retinal vessel abnormalities as a possible biomarker of brain volume loss in obese adolescents. Obesity (Silver Spring). 2013;21(12):E577–85.CrossRefPubMedPubMedCentral
18.
go back to reference Kelishadi R, Nilforoushan N, Okhovat A, Amra B, Poursafa P, Rogha M. Effects of adenoidectomy on markers of endothelial function and inflammation in normal-weight and overweight prepubescent children with sleep apnea. J Res Med Sci. 2011;16(Suppl 1):S387–94.PubMedPubMedCentral Kelishadi R, Nilforoushan N, Okhovat A, Amra B, Poursafa P, Rogha M. Effects of adenoidectomy on markers of endothelial function and inflammation in normal-weight and overweight prepubescent children with sleep apnea. J Res Med Sci. 2011;16(Suppl 1):S387–94.PubMedPubMedCentral
19.
go back to reference Dubern B, Aggoun Y, Boulé M, Fauroux B, Bonnet D, Tounian P. Arterial alterations in severely obese children with obstructive sleep apnoea. Int J Pediatr Obes. 2010;5(3):230–6.CrossRefPubMed Dubern B, Aggoun Y, Boulé M, Fauroux B, Bonnet D, Tounian P. Arterial alterations in severely obese children with obstructive sleep apnoea. Int J Pediatr Obes. 2010;5(3):230–6.CrossRefPubMed
20.
go back to reference Alonso-Álvarez ML, Cordero-Guevara JA, Terán-Santos J, Gonzalez-Martinez M, Jurado-Luque MJ, Corral-Peñafiel J, Duran-Cantolla J, Kheirandish-Gozal L, Gozal D. Obstructive sleep apnea in obese community-dwelling children: the NANOS study. Sleep. 2014;37(5):943–9.PubMedPubMedCentral Alonso-Álvarez ML, Cordero-Guevara JA, Terán-Santos J, Gonzalez-Martinez M, Jurado-Luque MJ, Corral-Peñafiel J, Duran-Cantolla J, Kheirandish-Gozal L, Gozal D. Obstructive sleep apnea in obese community-dwelling children: the NANOS study. Sleep. 2014;37(5):943–9.PubMedPubMedCentral
21.
go back to reference Gozal D, Kheirandish-Gozal L, Carreras A, Khalyfa A, Peris E. Obstructive sleep apnea and obesity are associated with reduced GPR 120 plasma levels in children. Sleep. 2014;37(5):935–41.PubMedPubMedCentral Gozal D, Kheirandish-Gozal L, Carreras A, Khalyfa A, Peris E. Obstructive sleep apnea and obesity are associated with reduced GPR 120 plasma levels in children. Sleep. 2014;37(5):935–41.PubMedPubMedCentral
22.
go back to reference Gozal D, Kheirandish-Gozal L. Childhood obesity and sleep: relatives, partners, or both?–a critical perspective on the evidence. Ann NY Acad Sci. 2012;1264:135–41.CrossRefPubMedPubMedCentral Gozal D, Kheirandish-Gozal L. Childhood obesity and sleep: relatives, partners, or both?–a critical perspective on the evidence. Ann NY Acad Sci. 2012;1264:135–41.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Bhattacharjee R, Kim J, Alotaibi WH, Kheirandish-Gozal L, Capdevila OS, Gozal D. Endothelial dysfunction in children without hypertension: potential contributions of obesity and obstructive sleep apnea. Chest. 2012;141(3):682–91.CrossRefPubMed Bhattacharjee R, Kim J, Alotaibi WH, Kheirandish-Gozal L, Capdevila OS, Gozal D. Endothelial dysfunction in children without hypertension: potential contributions of obesity and obstructive sleep apnea. Chest. 2012;141(3):682–91.CrossRefPubMed
25.
go back to reference Gozal D, Kheirandish-Gozal L. The obesity epidemic and disordered sleep during childhood and adolescence. Adolesc Med State Art Rev. 2010;21(3):480–90.PubMed Gozal D, Kheirandish-Gozal L. The obesity epidemic and disordered sleep during childhood and adolescence. Adolesc Med State Art Rev. 2010;21(3):480–90.PubMed
26.
go back to reference Bhattacharjee R, Kim J, Kheirandish-Gozal L, Gozal D. Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol. 2011;46(4):313–23.CrossRefPubMed Bhattacharjee R, Kim J, Kheirandish-Gozal L, Gozal D. Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol. 2011;46(4):313–23.CrossRefPubMed
27.
go back to reference Dayyat E, Kheirandish-Gozal L, Sans Capdevila O, Maarafeya MM, Gozal D. Obstructive sleep apnea in children: relative contributions of body mass index and adenotonsillar hypertrophy. Chest. 2009;136(1):137–44.CrossRefPubMedPubMedCentral Dayyat E, Kheirandish-Gozal L, Sans Capdevila O, Maarafeya MM, Gozal D. Obstructive sleep apnea in children: relative contributions of body mass index and adenotonsillar hypertrophy. Chest. 2009;136(1):137–44.CrossRefPubMedPubMedCentral
28.
go back to reference Gozal D, Crabtree VM, Sans Capdevila O, Witcher LA, Kheirandish-Gozal L. C-reactive protein, obstructive sleep apnea, and cognitive dysfunction in school-aged children. Am J Respir Crit Care Med. 2007;176(2):188–93.CrossRefPubMedPubMedCentral Gozal D, Crabtree VM, Sans Capdevila O, Witcher LA, Kheirandish-Gozal L. C-reactive protein, obstructive sleep apnea, and cognitive dysfunction in school-aged children. Am J Respir Crit Care Med. 2007;176(2):188–93.CrossRefPubMedPubMedCentral
29.
go back to reference Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Kim J. C-reactive protein and obstructive sleep apnea syndrome in children. Front Biosci (Elite Ed). 2012;4:2410–22.CrossRefPubMed Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Kim J. C-reactive protein and obstructive sleep apnea syndrome in children. Front Biosci (Elite Ed). 2012;4:2410–22.CrossRefPubMed
30.
go back to reference Philby MF, Macey PM, Ma RA, Kumar R, Gozal D, Kheirandish-Gozal L. Reduced regional grey matter volumes in pediatric obstructive sleep apnea. Sci Rep. 2017;7:44566.CrossRefPubMedPubMedCentral Philby MF, Macey PM, Ma RA, Kumar R, Gozal D, Kheirandish-Gozal L. Reduced regional grey matter volumes in pediatric obstructive sleep apnea. Sci Rep. 2017;7:44566.CrossRefPubMedPubMedCentral
31.
go back to reference Chan KC, Shi L, So HK, Wang D, Liew AW, Rasalkar DD, Chu CW, Wing YK, Li AM. Neurocognitive dysfunction and grey matter density deficit in children with obstructive sleep apnoea. Sleep Med. 2014;15(9):1055–61.CrossRefPubMed Chan KC, Shi L, So HK, Wang D, Liew AW, Rasalkar DD, Chu CW, Wing YK, Li AM. Neurocognitive dysfunction and grey matter density deficit in children with obstructive sleep apnoea. Sleep Med. 2014;15(9):1055–61.CrossRefPubMed
32.
go back to reference Cha J, Zea-Hernandez JA, Sin S, Graw-Panzer K, Shifteh K, Isasi CR, Wagshul ME, Moran EE, Posner J, Zimmerman ME, Arens R. The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children. J Neurosci. 2017;37(16):4280–8.CrossRefPubMed Cha J, Zea-Hernandez JA, Sin S, Graw-Panzer K, Shifteh K, Isasi CR, Wagshul ME, Moran EE, Posner J, Zimmerman ME, Arens R. The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children. J Neurosci. 2017;37(16):4280–8.CrossRefPubMed
33.
go back to reference Lv J, Shi L, Zhao L, Weng J, Mok VC, Chu WC, Wang D. Morphometry analysis of basal ganglia structures in children with obstructive sleep apnea. J X-ray Sci Technol. 2017;25(1):93–9.CrossRef Lv J, Shi L, Zhao L, Weng J, Mok VC, Chu WC, Wang D. Morphometry analysis of basal ganglia structures in children with obstructive sleep apnea. J X-ray Sci Technol. 2017;25(1):93–9.CrossRef
34.
go back to reference Kheirandish-Gozal L, Yoder K, Kulkarni R, Gozal D, Decety J. Preliminary functional MRI neural correlates of executive functioning and empathy in children with obstructive sleep apnea. Sleep. 2014;37(3):587–92.CrossRefPubMedPubMedCentral Kheirandish-Gozal L, Yoder K, Kulkarni R, Gozal D, Decety J. Preliminary functional MRI neural correlates of executive functioning and empathy in children with obstructive sleep apnea. Sleep. 2014;37(3):587–92.CrossRefPubMedPubMedCentral
35.
go back to reference Gozal D, Pope DW Jr. Snoring during early childhood and academic performance at ages thirteen to fourteen years. Pediatrics. 2001;107(6):1394–9.CrossRefPubMed Gozal D, Pope DW Jr. Snoring during early childhood and academic performance at ages thirteen to fourteen years. Pediatrics. 2001;107(6):1394–9.CrossRefPubMed
36.
go back to reference Kheirandish L, Gozal D, Pequignot JM, Pequignot J, Row BW. Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex. Pediatr Res. 2005;58(3):594–9.CrossRefPubMed Kheirandish L, Gozal D, Pequignot JM, Pequignot J, Row BW. Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex. Pediatr Res. 2005;58(3):594–9.CrossRefPubMed
37.
go back to reference Reinert KR, Po’e EK, Barkin SL. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes. 2013;2013:820956.CrossRefPubMedPubMedCentral Reinert KR, Po’e EK, Barkin SL. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes. 2013;2013:820956.CrossRefPubMedPubMedCentral
38.
go back to reference Bauer CC, Moreno B, González-Santos L, Concha L, Barquera S, Barrios FA. Child overweight and obesity are associated with reduced executive cognitive performance and brain alterations: a magnetic resonance imaging study in Mexican children. Pediatr Obes. 2015;10(3):196–204.CrossRefPubMed Bauer CC, Moreno B, González-Santos L, Concha L, Barquera S, Barrios FA. Child overweight and obesity are associated with reduced executive cognitive performance and brain alterations: a magnetic resonance imaging study in Mexican children. Pediatr Obes. 2015;10(3):196–204.CrossRefPubMed
39.
go back to reference Alosco ML, Stanek KM, Galioto R, Korgaonkar MS, Grieve SM, Brickman AM, Spitznagel MB, Gunstad J. Body mass index and brain structure in healthy children and adolescents. Int J Neurosci. 2014;124(1):49–55.CrossRefPubMed Alosco ML, Stanek KM, Galioto R, Korgaonkar MS, Grieve SM, Brickman AM, Spitznagel MB, Gunstad J. Body mass index and brain structure in healthy children and adolescents. Int J Neurosci. 2014;124(1):49–55.CrossRefPubMed
40.
go back to reference Booth JN, Tomporowski PD, Boyle JM, Ness AR, Joinson C, Leary SD, Reilly JJ. Obesity impairs academic attainment in adolescence: findings from ALSPAC, a UK cohort. Int J Obes (Lond). 2014;38(10):1335–42.PubMedCentral Booth JN, Tomporowski PD, Boyle JM, Ness AR, Joinson C, Leary SD, Reilly JJ. Obesity impairs academic attainment in adolescence: findings from ALSPAC, a UK cohort. Int J Obes (Lond). 2014;38(10):1335–42.PubMedCentral
41.
go back to reference Gileles-Hillel A, Alonso-Álvarez ML, Kheirandish-Gozal L, Peris E, Cordero-Guevara JA, Terán-Santos J, Martinez MG, Jurado-Luque MJ, Corral-Peñafiel J, Duran-Cantolla J, Gozal D. Inflammatory markers and obstructive sleep apnea in obese children: the NANOS study. Mediators Inflamm. 2014;2014:605280.CrossRefPubMedPubMedCentral Gileles-Hillel A, Alonso-Álvarez ML, Kheirandish-Gozal L, Peris E, Cordero-Guevara JA, Terán-Santos J, Martinez MG, Jurado-Luque MJ, Corral-Peñafiel J, Duran-Cantolla J, Gozal D. Inflammatory markers and obstructive sleep apnea in obese children: the NANOS study. Mediators Inflamm. 2014;2014:605280.CrossRefPubMedPubMedCentral
42.
go back to reference Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.CrossRefPubMed Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.CrossRefPubMed
43.
go back to reference Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.CrossRefPubMed Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.CrossRefPubMed
44.
go back to reference Shifrin DA Jr, Demory Beckler M, Coffey RJ, Tyska MJ. Extracellular vesicles: communication, coercion, and conditioning. Mol Biol Cell. 2013;24(9):1253–9.CrossRefPubMedPubMedCentral Shifrin DA Jr, Demory Beckler M, Coffey RJ, Tyska MJ. Extracellular vesicles: communication, coercion, and conditioning. Mol Biol Cell. 2013;24(9):1253–9.CrossRefPubMedPubMedCentral
45.
go back to reference Jayachandran M, Miller VM, Heit JA, Owen WG. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods. 2012;375:207–14.CrossRefPubMed Jayachandran M, Miller VM, Heit JA, Owen WG. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods. 2012;375:207–14.CrossRefPubMed
46.
go back to reference Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood. 2004;104:2761–6.CrossRefPubMed Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood. 2004;104:2761–6.CrossRefPubMed
47.
go back to reference Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101:942–8.CrossRefPubMed Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101:942–8.CrossRefPubMed
48.
go back to reference Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.CrossRefPubMed Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.CrossRefPubMed
49.
go back to reference Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179:1969–78.CrossRefPubMed Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179:1969–78.CrossRefPubMed
50.
go back to reference Masyuk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59:621–5.CrossRefPubMed Masyuk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59:621–5.CrossRefPubMed
51.
go back to reference Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J. 2008;37:323–32.CrossRefPubMed Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J. 2008;37:323–32.CrossRefPubMed
52.
go back to reference Cosme J, Liu PP, Gramolini AO. The cardiovascular exosome: current perspectives and potential. Proteomics. 2013;13:1654–9.CrossRefPubMed Cosme J, Liu PP, Gramolini AO. The cardiovascular exosome: current perspectives and potential. Proteomics. 2013;13:1654–9.CrossRefPubMed
54.
go back to reference Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.CrossRefPubMed Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.CrossRefPubMed
55.
go back to reference Peters PJ, Geuze HJ, Van der Donk HA, Slot JW, Griffith JM, Stam NJ, Clevers HC, Borst J. Molecules relevant for T cell–target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 1989;19:1469–75.CrossRefPubMed Peters PJ, Geuze HJ, Van der Donk HA, Slot JW, Griffith JM, Stam NJ, Clevers HC, Borst J. Molecules relevant for T cell–target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 1989;19:1469–75.CrossRefPubMed
56.
go back to reference Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.CrossRefPubMed Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.CrossRefPubMed
57.
go back to reference Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell. 1997;8:2631–45.CrossRefPubMedPubMedCentral Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell. 1997;8:2631–45.CrossRefPubMedPubMedCentral
58.
go back to reference Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94:3791–9.PubMed Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94:3791–9.PubMed
59.
go back to reference Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7:297–303.CrossRefPubMed Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7:297–303.CrossRefPubMed
60.
go back to reference Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P, Altevogt P. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72:1095–102.CrossRefPubMed Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P, Altevogt P. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72:1095–102.CrossRefPubMed
61.
go back to reference Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.CrossRefPubMed Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.CrossRefPubMed
62.
go back to reference Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17:879–87.CrossRefPubMed Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17:879–87.CrossRefPubMed
63.
go back to reference Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lotvall J, Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9.CrossRefPubMedPubMedCentral Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lotvall J, Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9.CrossRefPubMedPubMedCentral
64.
go back to reference Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NC, Hall GF. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem. 2012;287:3842–9.CrossRefPubMed Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NC, Hall GF. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem. 2012;287:3842–9.CrossRefPubMed
65.
go back to reference Qiu S, Duan X, Geng X, Xie J, Gao H. Antigen-specific activities of CD8+ T cells in the nasal mucosa of patients with nasal allergy. Asian Pac J Allergy Immunol. 2012;30:107–13.PubMed Qiu S, Duan X, Geng X, Xie J, Gao H. Antigen-specific activities of CD8+ T cells in the nasal mucosa of patients with nasal allergy. Asian Pac J Allergy Immunol. 2012;30:107–13.PubMed
66.
go back to reference Dimov I, Jankovic Velickovic L, Stefanovic V. Urinary exosomes. Sci World J. 2009;9:1107–18.CrossRef Dimov I, Jankovic Velickovic L, Stefanovic V. Urinary exosomes. Sci World J. 2009;9:1107–18.CrossRef
67.
go back to reference Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 2004;31:114–21.CrossRefPubMed Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 2004;31:114–21.CrossRefPubMed
68.
go back to reference Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.CrossRefPubMed Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.CrossRefPubMed
69.
go back to reference Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;73:1907–20.CrossRef Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;73:1907–20.CrossRef
70.
go back to reference van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140:13–21.CrossRefPubMed van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140:13–21.CrossRefPubMed
71.
go back to reference Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52.CrossRefPubMedPubMedCentral Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52.CrossRefPubMedPubMedCentral
73.
go back to reference Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.CrossRefPubMed Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.CrossRefPubMed
74.
75.
go back to reference Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood–brain barrier. Sleep Med Rev. 2014;18(1):35–48.CrossRefPubMed Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood–brain barrier. Sleep Med Rev. 2014;18(1):35–48.CrossRefPubMed
76.
go back to reference Kim LJ, Martinez D, Fiori CZ, Baronio D, Kretzmann NA, Barros HM. Hypomyelination, memory impairment, and blood–brain barrier permeability in a model of sleep apnea. Brain Res. 2015;1597:28–36.CrossRefPubMed Kim LJ, Martinez D, Fiori CZ, Baronio D, Kretzmann NA, Barros HM. Hypomyelination, memory impairment, and blood–brain barrier permeability in a model of sleep apnea. Brain Res. 2015;1597:28–36.CrossRefPubMed
77.
go back to reference Baronio D, Martinez D, Fiori CZ, Bambini-Junior V, Forgiarini LF, da Rosa DP, Kim LJ, Cerski. Altered aquaporins in the brains of mice submitted to intermittent hypoxia model of sleep apnea. Respir Physiol Neurobiol. 2013;185(2):217–321.CrossRefPubMed Baronio D, Martinez D, Fiori CZ, Bambini-Junior V, Forgiarini LF, da Rosa DP, Kim LJ, Cerski. Altered aquaporins in the brains of mice submitted to intermittent hypoxia model of sleep apnea. Respir Physiol Neurobiol. 2013;185(2):217–321.CrossRefPubMed
78.
go back to reference Kilicarslan R, Alkan A, Sharifov R, Akkoyunlu ME, Aralasmak A, Kocer A, Kart L. The effect of obesity on brain diffusion alteration in patients with obstructive sleep apnea. Sci World J. 2014;2014:768415.CrossRef Kilicarslan R, Alkan A, Sharifov R, Akkoyunlu ME, Aralasmak A, Kocer A, Kart L. The effect of obesity on brain diffusion alteration in patients with obstructive sleep apnea. Sci World J. 2014;2014:768415.CrossRef
79.
go back to reference Wardly DE. Intracranial hypertension associated with obstructive sleep apnea: a discussion of potential etiologic factors. Med Hypotheses. 2014;83(6):792–7.CrossRefPubMed Wardly DE. Intracranial hypertension associated with obstructive sleep apnea: a discussion of potential etiologic factors. Med Hypotheses. 2014;83(6):792–7.CrossRefPubMed
80.
go back to reference Schroen B, Heymans S. Small but smart-microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res. 2012;93:605–13.CrossRefPubMed Schroen B, Heymans S. Small but smart-microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res. 2012;93:605–13.CrossRefPubMed
81.
go back to reference Thum T, Mayr M. Review focus on the role of microRNA in cardiovascular biology and disease. Cardiovasc Res. 2012;93:543–4.CrossRefPubMed Thum T, Mayr M. Review focus on the role of microRNA in cardiovascular biology and disease. Cardiovasc Res. 2012;93:543–4.CrossRefPubMed
82.
go back to reference Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:27–32.CrossRef Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:27–32.CrossRef
83.
go back to reference Zhan R, Leng X, Liu X, Wang X, Gong J, Yan L, Wang L, Wang Y, Wang X, Qian LJ. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun. 2009;387:229–33.CrossRefPubMed Zhan R, Leng X, Liu X, Wang X, Gong J, Yan L, Wang L, Wang Y, Wang X, Qian LJ. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun. 2009;387:229–33.CrossRefPubMed
84.
go back to reference Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RC. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 2010;116:2385–94.CrossRefPubMed Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RC. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 2010;116:2385–94.CrossRefPubMed
85.
go back to reference Al-Nedawi K, Szemraj J, Cierniewski CS. Mast cell-derived exosomes activate endothelial cells to secrete plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol. 2005;25:1744–9.CrossRefPubMed Al-Nedawi K, Szemraj J, Cierniewski CS. Mast cell-derived exosomes activate endothelial cells to secrete plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol. 2005;25:1744–9.CrossRefPubMed
86.
go back to reference Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S. The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. Biochim Biophys Acta. 2008;1778:601–13.CrossRefPubMed Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S. The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. Biochim Biophys Acta. 2008;1778:601–13.CrossRefPubMed
87.
go back to reference Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44.CrossRefPubMed Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44.CrossRefPubMed
88.
go back to reference Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126:741–54.CrossRefPubMed Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126:741–54.CrossRefPubMed
89.
go back to reference Wood MJ, O’Loughlin AJ, Samira L. Exosomes and the blood–brain barrier: implications for neurological diseases. Ther Deliv. 2011;2(9):1095–9.CrossRefPubMed Wood MJ, O’Loughlin AJ, Samira L. Exosomes and the blood–brain barrier: implications for neurological diseases. Ther Deliv. 2011;2(9):1095–9.CrossRefPubMed
90.
go back to reference Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS. 2013;10(1):4.CrossRefPubMedPubMedCentral Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS. 2013;10(1):4.CrossRefPubMedPubMedCentral
91.
go back to reference El Andaloussi S, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65(3):391–7.CrossRefPubMed El Andaloussi S, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65(3):391–7.CrossRefPubMed
92.
go back to reference Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol. 2016;53(2):818–34.CrossRefPubMed Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol. 2016;53(2):818–34.CrossRefPubMed
93.
go back to reference Khalyfa A, Zhang C, Khalyfa AA, Foster GE, Beaudin AE, Andrade J, Hanly PJ, Poulin MJ, Gozal D. Effect on intermittent hypoxia on plasma exosomal miRNA signature and endothelial function in healthy adults. Sleep. 2016;39(12):2077–90.CrossRefPubMedPubMedCentral Khalyfa A, Zhang C, Khalyfa AA, Foster GE, Beaudin AE, Andrade J, Hanly PJ, Poulin MJ, Gozal D. Effect on intermittent hypoxia on plasma exosomal miRNA signature and endothelial function in healthy adults. Sleep. 2016;39(12):2077–90.CrossRefPubMedPubMedCentral
94.
go back to reference Khalyfa A, Kheirandish-Gozal L, Khalyfa AA, Philby MF, Alonso-Alvarez ML, Mohammadi M, Bhattacharjee R, Teran Santos J, Huang L, Andrade J, Gozal D. Circulating plasma extracellular microvesicle miRNA cargo and endothelial dysfunction in OSA children. Am J. Resp Crit Care Med. 2016;194(9):1116–26.CrossRefPubMed Khalyfa A, Kheirandish-Gozal L, Khalyfa AA, Philby MF, Alonso-Alvarez ML, Mohammadi M, Bhattacharjee R, Teran Santos J, Huang L, Andrade J, Gozal D. Circulating plasma extracellular microvesicle miRNA cargo and endothelial dysfunction in OSA children. Am J. Resp Crit Care Med. 2016;194(9):1116–26.CrossRefPubMed
Metadata
Title
Exosomes, blood–brain barrier, and cognitive dysfunction in pediatric sleep apnea
Authors
Leila Kheirandish-Gozal
Abdelnaby Khalyfa
David Gozal
Publication date
01-10-2017
Publisher
Springer Japan
Published in
Sleep and Biological Rhythms / Issue 4/2017
Print ISSN: 1446-9235
Electronic ISSN: 1479-8425
DOI
https://doi.org/10.1007/s41105-017-0108-8

Other articles of this Issue 4/2017

Sleep and Biological Rhythms 4/2017 Go to the issue