Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2009

Open Access 01-12-2009 | Commentary

Exoskeletons and orthoses: classification, design challenges and future directions

Author: Hugh Herr

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2009

Login to get access

Abstract

For over a century, technologists and scientists have actively sought the development of exoskeletons and orthoses designed to augment human economy, strength, and endurance. While there are still many challenges associated with exoskeletal and orthotic design that have yet to be perfected, the advances in the field have been truly impressive. In this commentary, I first classify exoskeletons and orthoses into devices that act in series and in parallel to a human limb, providing a few examples within each category. This classification is then followed by a discussion of major design challenges and future research directions critical to the field of exoskeletons and orthoses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cavagna GA, Heglund NC, Taylor CR: Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 1977, 233: R243-R261.PubMed Cavagna GA, Heglund NC, Taylor CR: Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 1977, 233: R243-R261.PubMed
2.
go back to reference Ker RF, Bennett MB, Bibby SR, Kester RC, Alexander RM: The spring in the arch of the human foot. Nature 1987, 325: 147-149.CrossRefPubMed Ker RF, Bennett MB, Bibby SR, Kester RC, Alexander RM: The spring in the arch of the human foot. Nature 1987, 325: 147-149.CrossRefPubMed
3.
go back to reference Alexander RM: Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University Press; 1988. Alexander RM: Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University Press; 1988.
5.
go back to reference McMahon TA, Cheng GC: The mechanics of running: how does stiffness couple with speed? J Biomech 1990,23(suppl 1):65-78.CrossRefPubMed McMahon TA, Cheng GC: The mechanics of running: how does stiffness couple with speed? J Biomech 1990,23(suppl 1):65-78.CrossRefPubMed
6.
go back to reference Farley CT, Glasheen J, McMahon TA: Running springs: speed and animal size. J Exp Biol 1993, 185: 71-86.PubMed Farley CT, Glasheen J, McMahon TA: Running springs: speed and animal size. J Exp Biol 1993, 185: 71-86.PubMed
7.
go back to reference Hogan N: Skeletal muscle impedance in the control of motor actions. Journal of Mechanics in Medicine an Biology 2002,2(3):359-373.CrossRef Hogan N: Skeletal muscle impedance in the control of motor actions. Journal of Mechanics in Medicine an Biology 2002,2(3):359-373.CrossRef
8.
9.
go back to reference Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr H: Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol 2002, 92: 469-478.CrossRefPubMed Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr H: Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol 2002, 92: 469-478.CrossRefPubMed
10.
go back to reference Herr H, Gamow RI: Shoe and foot prosthesis with bending beam spring structures. U.S. Patent 5,701,686 1997. Herr H, Gamow RI: Shoe and foot prosthesis with bending beam spring structures. U.S. Patent 5,701,686 1997.
11.
go back to reference Herr H, Gamow RI: Shoe and foot prosthesis with bending beam spring structures. U.S. Patent 6,029,374 2000. Herr H, Gamow RI: Shoe and foot prosthesis with bending beam spring structures. U.S. Patent 6,029,374 2000.
12.
go back to reference Dick J, Edwards E: Human Bipedal Locomotion Device. U.S. Patent 5,016,869 1991. Dick J, Edwards E: Human Bipedal Locomotion Device. U.S. Patent 5,016,869 1991.
13.
go back to reference Yagn N: Apparatus for facilitating walking, running, and jumping. U.S. Patent 420179 1890. Yagn N: Apparatus for facilitating walking, running, and jumping. U.S. Patent 420179 1890.
14.
go back to reference Yagn N: Apparatus for facilitating walking, running, and jumping. U.S. Patent 438830 1890. Yagn N: Apparatus for facilitating walking, running, and jumping. U.S. Patent 438830 1890.
15.
go back to reference Herr H, Walsh C, Valiente A, Pasch K: Exoskeletons for running and walking. U.S. Patent Application 60/736,929 2006. Herr H, Walsh C, Valiente A, Pasch K: Exoskeletons for running and walking. U.S. Patent Application 60/736,929 2006.
16.
go back to reference Grabowski AM, Herr H: Leg exoskeleton reduces the metabolic cost of human hopping. J Appl Physiol 2009, in press. Grabowski AM, Herr H: Leg exoskeleton reduces the metabolic cost of human hopping. J Appl Physiol 2009, in press.
17.
go back to reference Kazerooni H, Steger R: The Berkeley lower extremity exoskeleton. Transactions of the ASME, Journal of Dynamic Systems, Measurements, and Control 2006, 128: 14-25.CrossRef Kazerooni H, Steger R: The Berkeley lower extremity exoskeleton. Transactions of the ASME, Journal of Dynamic Systems, Measurements, and Control 2006, 128: 14-25.CrossRef
18.
go back to reference Zoss AB, Kazerooni H, Chu A: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE ASME Trans Mechatron 2006,11(2):128-138.CrossRef Zoss AB, Kazerooni H, Chu A: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE ASME Trans Mechatron 2006,11(2):128-138.CrossRef
19.
go back to reference Chu A, Kazerooni H, Zozz A: On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX). Proc. of the 2006 IEEE International Conference on Robotics and Automation: Barcelona, Spain 2005, 4345-4352. Chu A, Kazerooni H, Zozz A: On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX). Proc. of the 2006 IEEE International Conference on Robotics and Automation: Barcelona, Spain 2005, 4345-4352.
20.
go back to reference Zoss A, Kazerooni H: Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics 2006,20(9):967-988.CrossRef Zoss A, Kazerooni H: Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics 2006,20(9):967-988.CrossRef
21.
go back to reference Amundson K, Raade J, Harding N, Kazerooni H: Hybrid hydraulic-electric power unit for field and service robots. Proceedings of the IEEE IRS/RSJ International Conference on Intelligent Robots and Systems: August 2–6, 2005; Alberta, Canada 2005, 3453-3458.CrossRef Amundson K, Raade J, Harding N, Kazerooni H: Hybrid hydraulic-electric power unit for field and service robots. Proceedings of the IEEE IRS/RSJ International Conference on Intelligent Robots and Systems: August 2–6, 2005; Alberta, Canada 2005, 3453-3458.CrossRef
22.
go back to reference Guizzo E, Goldstein H: The rise of the body bots. IEEE Spectrum 2005,42(10):50-56.CrossRef Guizzo E, Goldstein H: The rise of the body bots. IEEE Spectrum 2005,42(10):50-56.CrossRef
23.
go back to reference Huang GT: Wearable robots. Technology Review 2004. Huang GT: Wearable robots. Technology Review 2004.
24.
go back to reference 2006 ARO in Review U.S. Army Research Laboratory, U.S. Army Research Office, Adelphi, MD; 2006. 2006 ARO in Review U.S. Army Research Laboratory, U.S. Army Research Office, Adelphi, MD; 2006.
25.
go back to reference Walsh CJ, Pasch K, Herr H: An autonomous, under-actuated exoskeleton for load-carrying augmentation. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Beijing, China 2006, 1410-1415. Walsh CJ, Pasch K, Herr H: An autonomous, under-actuated exoskeleton for load-carrying augmentation. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Beijing, China 2006, 1410-1415.
26.
go back to reference Walsh CJ, Paluska D, Pasch K, Grand W, Valiente A, Herr H: Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. Proc. IEEE International Conference on Robotics and Automation. 2006; Orlando, FL, USA 2006, 3485-3491. Walsh CJ, Paluska D, Pasch K, Grand W, Valiente A, Herr H: Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. Proc. IEEE International Conference on Robotics and Automation. 2006; Orlando, FL, USA 2006, 3485-3491.
27.
go back to reference Valiente A: Design of a quasi-passive parallel leg exoskeleton to augment load carrying for walking. In Master's Thesis. Massachusetts Institute of Technology, Department of Mechanical Engineering, MA, USA; 2005. Valiente A: Design of a quasi-passive parallel leg exoskeleton to augment load carrying for walking. In Master's Thesis. Massachusetts Institute of Technology, Department of Mechanical Engineering, MA, USA; 2005.
28.
go back to reference Walsh CJ: Biomimetic design of an underactuated leg exoskeleton for load-carrying augmentation. In Master's Thesis. Massachusetts Institute of Technology, Department of Mechanical Engineering, MA, USA; 2006. Walsh CJ: Biomimetic design of an underactuated leg exoskeleton for load-carrying augmentation. In Master's Thesis. Massachusetts Institute of Technology, Department of Mechanical Engineering, MA, USA; 2006.
29.
go back to reference Walsh C, Endo K, Herr H: A quasi-passive leg exoskeleton for load-carrying augmentation. Int J HR 2007,4(3):487-506. Walsh C, Endo K, Herr H: A quasi-passive leg exoskeleton for load-carrying augmentation. Int J HR 2007,4(3):487-506.
30.
go back to reference Gregorczyk KN, Obusek JP, Hasselquist L, Schiffman JM, Bensel CK, Gutekunst D, Frykman P: The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics during Walking with Loads. 25th Army Science Conference. 2006; Orlando, FL, USA, Nov. 27–30 Gregorczyk KN, Obusek JP, Hasselquist L, Schiffman JM, Bensel CK, Gutekunst D, Frykman P: The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics during Walking with Loads. 25th Army Science Conference. 2006; Orlando, FL, USA, Nov. 27–30
31.
go back to reference Jansen JF, Birdwell JF, Boynton AC, Crowell HP III, Durfee WK, Gongola JD, Killough SM, Leo DJ, Lind RF, Love LJ, Mungiole M, Pin FG, Richardson BS, Rowe JC, Velev OA, Zambrano T: Phase I Report: DARPA Exoskeleton Program. Oak Ridge National Laboratory Report number ORNL/TM-2003/216 2003. Jansen JF, Birdwell JF, Boynton AC, Crowell HP III, Durfee WK, Gongola JD, Killough SM, Leo DJ, Lind RF, Love LJ, Mungiole M, Pin FG, Richardson BS, Rowe JC, Velev OA, Zambrano T: Phase I Report: DARPA Exoskeleton Program. Oak Ridge National Laboratory Report number ORNL/TM-2003/216 2003.
32.
33.
go back to reference Vukobratovic M, Hristic D, Stojiljkovic Z: Development of active anthropomorphic exoskeletons. Med Biol Eng 1974,12(1):66-80.CrossRefPubMed Vukobratovic M, Hristic D, Stojiljkovic Z: Development of active anthropomorphic exoskeletons. Med Biol Eng 1974,12(1):66-80.CrossRefPubMed
34.
go back to reference Vukobratovic M, Borovac B, Surla D, Stokic D: Scientific Fundamentals of Robotics 7, Biped Locomotion: Dynamics Stability, Control, and Application. New York: Springer-Verlag; 1990.CrossRef Vukobratovic M, Borovac B, Surla D, Stokic D: Scientific Fundamentals of Robotics 7, Biped Locomotion: Dynamics Stability, Control, and Application. New York: Springer-Verlag; 1990.CrossRef
35.
go back to reference Hristic D, Vukobratovic M, Timotijevic M: New model of autonomous 'active suit' for distrophic patients. Proceedings of the International Symposium on External Control of Human Extremities 1981, 33-42. Hristic D, Vukobratovic M, Timotijevic M: New model of autonomous 'active suit' for distrophic patients. Proceedings of the International Symposium on External Control of Human Extremities 1981, 33-42.
36.
go back to reference Grundmann J, Seireg A: Computer Control of Multi-Task Exoskeleton for Paraplegics. Proceedings of the Second CISM/IFTOMM International Symposium on the Theory and Practice of Robots and Manipulators 1977, 233-240. Grundmann J, Seireg A: Computer Control of Multi-Task Exoskeleton for Paraplegics. Proceedings of the Second CISM/IFTOMM International Symposium on the Theory and Practice of Robots and Manipulators 1977, 233-240.
37.
go back to reference Seireg A, Grundmann JG: Design of a Multitask Exoskeletal Walking Device for Paraplegics. In Biomechanics of Medical Devices. Marcel Dekker, Inc, New York; 1981:569-644. Seireg A, Grundmann JG: Design of a Multitask Exoskeletal Walking Device for Paraplegics. In Biomechanics of Medical Devices. Marcel Dekker, Inc, New York; 1981:569-644.
38.
go back to reference Tomovic R, Popovic D, Gracanin F: A technology for self-fitting of orthoses. Proceedings of the International Symposium on External Control of Human Extremities 1978, 15-25. Tomovic R, Popovic D, Gracanin F: A technology for self-fitting of orthoses. Proceedings of the International Symposium on External Control of Human Extremities 1978, 15-25.
39.
go back to reference Hristic D, Vukobratovic M, Gracanin F: Development and evaluation of modular active orthosis. Proceedings of the International Symposium on External Control of Human Extremities 1978, 137-146. Hristic D, Vukobratovic M, Gracanin F: Development and evaluation of modular active orthosis. Proceedings of the International Symposium on External Control of Human Extremities 1978, 137-146.
40.
go back to reference Schwirtlich L, Kovacevic S, Popovic D: Clinical evaluation of the self-fitting modular orthoses by spastic paraplegics. Proceedings of the International Symposium on External Control of Human Extremities 1981, 21-32. Schwirtlich L, Kovacevic S, Popovic D: Clinical evaluation of the self-fitting modular orthoses by spastic paraplegics. Proceedings of the International Symposium on External Control of Human Extremities 1981, 21-32.
41.
go back to reference Jaukovic ND: Active peroneal orthosis. Proceedings of the International Symposium on External Control of Human Extremities 1981, 13-20. Jaukovic ND: Active peroneal orthosis. Proceedings of the International Symposium on External Control of Human Extremities 1981, 13-20.
42.
go back to reference Schwirtlich L, Popovic D: Hybrid orthoses for deficient locomotion. Proceedings of the International Symposium on External Control of Human Extremities 1984, 23-32. Schwirtlich L, Popovic D: Hybrid orthoses for deficient locomotion. Proceedings of the International Symposium on External Control of Human Extremities 1984, 23-32.
43.
go back to reference Popovic D, Schwirtlich L: Hybrid powered orthoses. Proceedings of the International Symposium on External Control of Human Extremities 1987, 95-104. Popovic D, Schwirtlich L: Hybrid powered orthoses. Proceedings of the International Symposium on External Control of Human Extremities 1987, 95-104.
44.
go back to reference Popovic D, Schwirtlich L, Radosavijevic S: Powered hybrid assistive system. Proceedings of the International Symposium on External Control of Human Extremities 1990, 177-186. Popovic D, Schwirtlich L, Radosavijevic S: Powered hybrid assistive system. Proceedings of the International Symposium on External Control of Human Extremities 1990, 177-186.
45.
go back to reference Durfee WK, Hausdorff JM: Regulating knee joint position by combining electrical stimulation with a controllable friction brake. Ann Biomed Eng 1990, 18: 575-596.CrossRefPubMed Durfee WK, Hausdorff JM: Regulating knee joint position by combining electrical stimulation with a controllable friction brake. Ann Biomed Eng 1990, 18: 575-596.CrossRefPubMed
46.
go back to reference Goldfarb M, Durfee WK: Design of a controlled brake orthosis for FES-aided gait. IEEE Trans Rehabil Eng 1996,4(1):13-24.CrossRefPubMed Goldfarb M, Durfee WK: Design of a controlled brake orthosis for FES-aided gait. IEEE Trans Rehabil Eng 1996,4(1):13-24.CrossRefPubMed
47.
go back to reference Yamamoto K, Hyodo K, Ishii M, Matsuo T: Development of power assisting suit for assisting nurse labor. JSME International Journal. Series C 2002,45(3):703-711.CrossRef Yamamoto K, Hyodo K, Ishii M, Matsuo T: Development of power assisting suit for assisting nurse labor. JSME International Journal. Series C 2002,45(3):703-711.CrossRef
48.
go back to reference Yamamoto K, Ishii M, Hyodo K, Yoshimitsu T, Matsuo T: Development of power assisting suit (miniaturization of supply system to realize wearable suit). JSME International Journal Series C 2003,46(3):923-930.CrossRef Yamamoto K, Ishii M, Hyodo K, Yoshimitsu T, Matsuo T: Development of power assisting suit (miniaturization of supply system to realize wearable suit). JSME International Journal Series C 2003,46(3):923-930.CrossRef
49.
go back to reference Kawamoto H, Sankai Y: Power assist system HAL-3 for gait disorder person. Lecture Notes on Computer Science (LNCS), vol. 2398/2002. Proceedings of the International Conference on Computers Helping People with Special Needs (ICCHP), Berlin, Germany 2002. Kawamoto H, Sankai Y: Power assist system HAL-3 for gait disorder person. Lecture Notes on Computer Science (LNCS), vol. 2398/2002. Proceedings of the International Conference on Computers Helping People with Special Needs (ICCHP), Berlin, Germany 2002.
50.
go back to reference Kawamoto H, Lee S, Kanbe S, Sankai Y: Power assist method for HAL-3 using EMG-based feedback controller. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics 2003, 1648-1653. Kawamoto H, Lee S, Kanbe S, Sankai Y: Power assist method for HAL-3 using EMG-based feedback controller. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics 2003, 1648-1653.
51.
go back to reference Pratt JE, Krupp BT, Morse CJ, Collins SH: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. Proc. IEEE International Conference on Robotics and Automation, New Orleans, LA, USA 2004, 2430-2435. Pratt JE, Krupp BT, Morse CJ, Collins SH: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. Proc. IEEE International Conference on Robotics and Automation, New Orleans, LA, USA 2004, 2430-2435.
52.
go back to reference Blaya JA, Herr H: Control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 2004,12(1):24-31.CrossRefPubMed Blaya JA, Herr H: Control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 2004,12(1):24-31.CrossRefPubMed
53.
go back to reference Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial muscles. J Appl Biomech 2005, 21: 189-197.PubMedCentralPubMed Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial muscles. J Appl Biomech 2005, 21: 189-197.PubMedCentralPubMed
54.
go back to reference Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture 2006, 23: 425-428.CrossRefPubMed Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture 2006, 23: 425-428.CrossRefPubMed
55.
go back to reference Sawicki GS, Gordon KE, Ferris DP: Powered lower limb orthoses: applications in motor adaptation and rehabilitation. Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics (ICORR) 2005, 206-211. Sawicki GS, Gordon KE, Ferris DP: Powered lower limb orthoses: applications in motor adaptation and rehabilitation. Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics (ICORR) 2005, 206-211.
56.
go back to reference Nikitczuk J, Weinberg B, Mavroidis C: Rehabilitative knee orthosis driven by electro-rheological fluid based actuators. Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005, 2283-2289.CrossRef Nikitczuk J, Weinberg B, Mavroidis C: Rehabilitative knee orthosis driven by electro-rheological fluid based actuators. Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005, 2283-2289.CrossRef
57.
go back to reference Banala SK, Agrawal SK, Fattah A, Krishnamoorthy V, Hsu W, Scholz J, Rudolph K: Gravity-balancing leg orthosis and its performance evaluation. IEEE Transactions on Robotics 2006,22(6):1228-1239.CrossRef Banala SK, Agrawal SK, Fattah A, Krishnamoorthy V, Hsu W, Scholz J, Rudolph K: Gravity-balancing leg orthosis and its performance evaluation. IEEE Transactions on Robotics 2006,22(6):1228-1239.CrossRef
58.
go back to reference Kong K, Jeon D: Design and control of an exoskeleton for the elderly and patients. IEEE Trans Neural Syst Rehabil Eng. 2006,15(3):367-378. Kong K, Jeon D: Design and control of an exoskeleton for the elderly and patients. IEEE Trans Neural Syst Rehabil Eng. 2006,15(3):367-378.
59.
go back to reference Herr H, Langman N: Optimization of human-powered elastic mechanisms for endurance amplification. Journal of the International Society for Structural and Multidisciplinary Optimization (ISSMO) 1997, 13: 65-67.CrossRef Herr H, Langman N: Optimization of human-powered elastic mechanisms for endurance amplification. Journal of the International Society for Structural and Multidisciplinary Optimization (ISSMO) 1997, 13: 65-67.CrossRef
60.
go back to reference Herr H: Crutch with Elbow and Shank Springs. US Patent 5,458,143 1995. Herr H: Crutch with Elbow and Shank Springs. US Patent 5,458,143 1995.
61.
go back to reference Herr H, Kornbluh R: New horizons for orthotic and prosthetic technology: artificial muscle for ambulation. In Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD): San Diego, CA 5385(1):1-9.CrossRef Herr H, Kornbluh R: New horizons for orthotic and prosthetic technology: artificial muscle for ambulation. In Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD): San Diego, CA 5385(1):1-9.CrossRef
62.
go back to reference Mulgaonkar A, Kornbluh R, Herr H: A new frontier for orthotics and prosthetics: application of dielectric elastomer actuators to bionics. In Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Edited by: Carpi F, De Rossi D, Kornbluh R, Pelrine R, Sommer-Larsen P. Elsevier; 2008. Mulgaonkar A, Kornbluh R, Herr H: A new frontier for orthotics and prosthetics: application of dielectric elastomer actuators to bionics. In Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Edited by: Carpi F, De Rossi D, Kornbluh R, Pelrine R, Sommer-Larsen P. Elsevier; 2008.
63.
go back to reference Endo K, Paluska D, Herr H: A quasi-passive model of human leg function in level-ground walking. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2006; Beijing, China 2006, 4935-4939. Endo K, Paluska D, Herr H: A quasi-passive model of human leg function in level-ground walking. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2006; Beijing, China 2006, 4935-4939.
64.
go back to reference Geyer H, Herr H: A muscle-reflex model that encodes principles of legged mechanics predicts human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 2009, in press. Geyer H, Herr H: A muscle-reflex model that encodes principles of legged mechanics predicts human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 2009, in press.
65.
go back to reference Loeb GE: Neural prosthetics. In The Handbook of Brain Theory and Neural Networks. 2nd edition. Edited by: Arbib MA. Cambridge, Massachusetts: MIT Press; Loeb GE: Neural prosthetics. In The Handbook of Brain Theory and Neural Networks. 2nd edition. Edited by: Arbib MA. Cambridge, Massachusetts: MIT Press;
66.
go back to reference Truccolo W, Friehs GM, Donoghue JP, Hochberg LR: Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 2008,28(5):1163-1178.CrossRefPubMed Truccolo W, Friehs GM, Donoghue JP, Hochberg LR: Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 2008,28(5):1163-1178.CrossRefPubMed
67.
go back to reference Kuiken T, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009,301(6):619-628.PubMedCentralCrossRefPubMed Kuiken T, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009,301(6):619-628.PubMedCentralCrossRefPubMed
Metadata
Title
Exoskeletons and orthoses: classification, design challenges and future directions
Author
Hugh Herr
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2009
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-6-21

Other articles of this Issue 1/2009

Journal of NeuroEngineering and Rehabilitation 1/2009 Go to the issue