Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2024

Open Access 01-12-2024 | Research

Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders

Authors: Marketa Wayhelova, Vladimira Vallova, Petr Broz, Aneta Mikulasova, Jan Smetana, Hana Dynkova Filkova, Dominika Machackova, Kristina Handzusova, Renata Gaillyova, Petr Kuglik

Published in: Orphanet Journal of Rare Diseases | Issue 1/2024

Login to get access

Abstract

Background

Neurodevelopmental disorders (NDDs) and/or associated multiple congenital abnormalities (MCAs) represent a genetically heterogeneous group of conditions with an adverse prognosis for the quality of intellectual and social abilities and common daily functioning. The rapid development of exome sequencing (ES) techniques, together with trio-based analysis, nowadays leads to up to 50% diagnostic yield. Therefore, it is considered as the state-of-the-art approach in these diagnoses.

Results

In our study, we present the results of ES in a cohort of 85 families with 90 children with severe NDDs and MCAs. The interconnection of the in-house bioinformatic pipeline and a unique algorithm for variant prioritization resulted in a diagnostic yield of up to 48.9% (44/90), including rare and novel causative variants (41/90) and intragenic copy-number variations (CNVs) (3/90). Of the total number of 47 causative variants, 53.2% (25/47) were novel, highlighting the clinical benefit of ES for unexplained NDDs. Moreover, trio-based ES was verified as a reliable tool for the detection of rare CNVs, ranging from intragenic exon deletions (GRIN2A, ZC4H2 genes) to a 6-Mb duplication. The functional analysis using PANTHER Gene Ontology confirmed the involvement of genes with causative variants in a wide spectrum of developmental processes and molecular pathways, which form essential structural and functional components of the central nervous system.

Conclusion

Taken together, we present one of the first ES studies of this scale from the central European region. Based on the high diagnostic yield for paediatric NDDs in this study, 48.9%, we confirm trio-based ES as an effective and reliable first-tier diagnostic test in the genetic evaluation of children with NDDs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Márquez-Caraveo M, Rodríguez-Valentín R, Pérez-Barrón V, Vázquez-Salas R, Sánchez-Ferrer J, De Castro F, et al. Children and adolescents with neurodevelopmental disorders show cognitive heterogeneity and require a person-centered approach. Sci Rep. 2021;11:18463.ADSPubMedPubMedCentralCrossRef Márquez-Caraveo M, Rodríguez-Valentín R, Pérez-Barrón V, Vázquez-Salas R, Sánchez-Ferrer J, De Castro F, et al. Children and adolescents with neurodevelopmental disorders show cognitive heterogeneity and require a person-centered approach. Sci Rep. 2021;11:18463.ADSPubMedPubMedCentralCrossRef
2.
go back to reference Miller D, Adam M, Aradhya S, Biesecker L, Brothman A, Carter N, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.PubMedPubMedCentralCrossRef Miller D, Adam M, Aradhya S, Biesecker L, Brothman A, Carter N, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.PubMedPubMedCentralCrossRef
3.
go back to reference Ravel J, Renaud M, Muller J, Becker A, Renard É, Remen T, et al. Clinical utility of periodic reinterpretation of CNVs of uncertain significance: an 8-year retrospective study. Genome Med. 2023;15:39.PubMedPubMedCentralCrossRef Ravel J, Renaud M, Muller J, Becker A, Renard É, Remen T, et al. Clinical utility of periodic reinterpretation of CNVs of uncertain significance: an 8-year retrospective study. Genome Med. 2023;15:39.PubMedPubMedCentralCrossRef
4.
go back to reference Carter M, Srour M, Au P, Buhas D, Dyack S, Eaton A, et al. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet. 2023;60:523–32.PubMedCrossRef Carter M, Srour M, Au P, Buhas D, Dyack S, Eaton A, et al. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet. 2023;60:523–32.PubMedCrossRef
5.
go back to reference Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98:149–64.PubMedPubMedCentralCrossRef Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98:149–64.PubMedPubMedCentralCrossRef
6.
go back to reference Basu S, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37:D832–6.PubMedCrossRef Basu S, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37:D832–6.PubMedCrossRef
7.
go back to reference McCarthy S, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry. 2014;19:652–8.PubMedPubMedCentralCrossRef McCarthy S, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry. 2014;19:652–8.PubMedPubMedCentralCrossRef
8.
go back to reference Du X, Gao X, Liu X, Shen L, Wang K, Fan Y, et al. Genetic diagnostic evaluation of trio-based whole exome sequencing among children with diagnosed or suspected autism spectrum disorder. Front Genet. 2018;9:594.PubMedPubMedCentralCrossRef Du X, Gao X, Liu X, Shen L, Wang K, Fan Y, et al. Genetic diagnostic evaluation of trio-based whole exome sequencing among children with diagnosed or suspected autism spectrum disorder. Front Genet. 2018;9:594.PubMedPubMedCentralCrossRef
9.
go back to reference Hu X, Guo R, Guo J, Qi Z, Li W, Hao C. Parallel tests of whole exome sequencing and copy number variant sequencing increase the diagnosis yields of rare pediatric disorders. Front Genet. 2020;11:473.PubMedPubMedCentralCrossRef Hu X, Guo R, Guo J, Qi Z, Li W, Hao C. Parallel tests of whole exome sequencing and copy number variant sequencing increase the diagnosis yields of rare pediatric disorders. Front Genet. 2020;11:473.PubMedPubMedCentralCrossRef
10.
go back to reference Testard Q, Vanhoye X, Yauy K, Naud M, Vieville G, Rousseau F, et al. Exome sequencing as a first-tier test for copy number variant detection: retrospective evaluation and prospective screening in 2418 cases. J Med Genet. 2022;59:1234–40.PubMedCrossRef Testard Q, Vanhoye X, Yauy K, Naud M, Vieville G, Rousseau F, et al. Exome sequencing as a first-tier test for copy number variant detection: retrospective evaluation and prospective screening in 2418 cases. J Med Genet. 2022;59:1234–40.PubMedCrossRef
11.
go back to reference Manickam K, McClain M, Demmer L, Biswas S, Kearney H, Malinowski J, et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:2029–37.PubMedCrossRef Manickam K, McClain M, Demmer L, Biswas S, Kearney H, Malinowski J, et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:2029–37.PubMedCrossRef
12.
go back to reference Monies D, Goljan E, Binmanee A, Alashwal A, Alsonbul A, Alhussaini A, et al. The clinical utility of rapid exome sequencing in a consanguineous population. Genome Med. 2023;15:44.PubMedPubMedCentralCrossRef Monies D, Goljan E, Binmanee A, Alashwal A, Alsonbul A, Alhussaini A, et al. The clinical utility of rapid exome sequencing in a consanguineous population. Genome Med. 2023;15:44.PubMedPubMedCentralCrossRef
13.
go back to reference Molina-Ramírez L, Kyle C, Ellingford J, Wright R, Taylor A, Bhaskar S, et al. Personalised virtual gene panels reduce interpretation workload and maintain diagnostic rates of proband-only clinical exome sequencing for rare disorders. J Med Genet. 2022;59:393–8.PubMedCrossRef Molina-Ramírez L, Kyle C, Ellingford J, Wright R, Taylor A, Bhaskar S, et al. Personalised virtual gene panels reduce interpretation workload and maintain diagnostic rates of proband-only clinical exome sequencing for rare disorders. J Med Genet. 2022;59:393–8.PubMedCrossRef
14.
go back to reference Kopanos C, Tsiolkas V, Kouris A, Chapple C, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–80.PubMedCrossRef Kopanos C, Tsiolkas V, Kouris A, Chapple C, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–80.PubMedCrossRef
15.
go back to reference Miller D, Lee K, Abul-Husn N, Amendola L, Brothers K, Chung W, et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023;25:100866.PubMedCrossRef Miller D, Lee K, Abul-Husn N, Amendola L, Brothers K, Chung W, et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023;25:100866.PubMedCrossRef
16.
go back to reference Wayhelova M, Vallova V, Broz P, Mikulasova A, Machackova D, Filkova H, et al. A unique case of Bloom syndrome with a combination of genetic hits: A lesson from trio-based exome sequencing. Mol Med Rep. 2023;27:110.PubMedPubMedCentralCrossRef Wayhelova M, Vallova V, Broz P, Mikulasova A, Machackova D, Filkova H, et al. A unique case of Bloom syndrome with a combination of genetic hits: A lesson from trio-based exome sequencing. Mol Med Rep. 2023;27:110.PubMedPubMedCentralCrossRef
17.
go back to reference Srivastava S, Love-Nichols J, Dies K, Ledbetter D, Martin C, Chung W, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21:2413–21.PubMedPubMedCentralCrossRef Srivastava S, Love-Nichols J, Dies K, Ledbetter D, Martin C, Chung W, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21:2413–21.PubMedPubMedCentralCrossRef
18.
go back to reference Marchuk D, Crooks K, Strande N, Kaiser-Rogers K, Milko L, Brandt A, et al. Increasing the diagnostic yield of exome sequencing by copy number variant analysis. PLoS ONE. 2018;13: e0209185.PubMedPubMedCentralCrossRef Marchuk D, Crooks K, Strande N, Kaiser-Rogers K, Milko L, Brandt A, et al. Increasing the diagnostic yield of exome sequencing by copy number variant analysis. PLoS ONE. 2018;13: e0209185.PubMedPubMedCentralCrossRef
19.
go back to reference Gao C, Wang X, Mei S, Li D, Duan J, Zhang P, et al. Diagnostic yields of Trio-WES accompanied by CNVseq for rare neurodevelopmental disorders. Front Genet. 2019;10:485.PubMedPubMedCentralCrossRef Gao C, Wang X, Mei S, Li D, Duan J, Zhang P, et al. Diagnostic yields of Trio-WES accompanied by CNVseq for rare neurodevelopmental disorders. Front Genet. 2019;10:485.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Brea-Fernández A, Álvarez-Barona M, Amigo J, Tubío-Fungueiriño M, Caamaño P, Fernández-Prieto M, et al. Trio-based exome sequencing reveals a high rate of the de novo variants in intellectual disability. Eur J Hum Genet. 2022;30:938–45.PubMedPubMedCentralCrossRef Brea-Fernández A, Álvarez-Barona M, Amigo J, Tubío-Fungueiriño M, Caamaño P, Fernández-Prieto M, et al. Trio-based exome sequencing reveals a high rate of the de novo variants in intellectual disability. Eur J Hum Genet. 2022;30:938–45.PubMedPubMedCentralCrossRef
22.
go back to reference Pagel K, Pejaver V, Lin G, Nam H, Mort M, Cooper D, et al. When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics. 2017;33:i389–98.PubMedPubMedCentralCrossRef Pagel K, Pejaver V, Lin G, Nam H, Mort M, Cooper D, et al. When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics. 2017;33:i389–98.PubMedPubMedCentralCrossRef
23.
go back to reference Parenti I, Rabaneda L, Schoen H, Novarino G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020;43:608–21.PubMedCrossRef Parenti I, Rabaneda L, Schoen H, Novarino G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020;43:608–21.PubMedCrossRef
24.
go back to reference Veraksa A, Del Campo M, McGinnis W. Developmental patterning genes and their conserved functions: from model organisms to humans. Mol Genet Metab. 2000;69:85–100.PubMedCrossRef Veraksa A, Del Campo M, McGinnis W. Developmental patterning genes and their conserved functions: from model organisms to humans. Mol Genet Metab. 2000;69:85–100.PubMedCrossRef
25.
go back to reference Coban-Akdemir Z, White J, Song X, Jhangiani S, Fatih J, Gambin T, et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet. 2018;103:171–87.PubMedPubMedCentralCrossRef Coban-Akdemir Z, White J, Song X, Jhangiani S, Fatih J, Gambin T, et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet. 2018;103:171–87.PubMedPubMedCentralCrossRef
26.
go back to reference Lindeboom R, Vermeulen M, Lehner B, Supek F. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet. 2019;51:1645–51.PubMedPubMedCentralCrossRef Lindeboom R, Vermeulen M, Lehner B, Supek F. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet. 2019;51:1645–51.PubMedPubMedCentralCrossRef
28.
go back to reference Zug R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol Open. 2022;11:bio058896.PubMedPubMedCentralCrossRef Zug R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol Open. 2022;11:bio058896.PubMedPubMedCentralCrossRef
29.
go back to reference Desmet F, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.PubMedPubMedCentralCrossRef Desmet F, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.PubMedPubMedCentralCrossRef
30.
go back to reference Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae J, Darbandi S, Knowles D, Li Y, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.PubMedCrossRef Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae J, Darbandi S, Knowles D, Li Y, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.PubMedCrossRef
32.
go back to reference Deignan J, Chung W, Kearney H, Monaghan K, Rehder C, Chao E. Points to consider in the reevaluation and reanalysis of genomic test results: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2019;21:1267–70.PubMedPubMedCentralCrossRef Deignan J, Chung W, Kearney H, Monaghan K, Rehder C, Chao E. Points to consider in the reevaluation and reanalysis of genomic test results: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2019;21:1267–70.PubMedPubMedCentralCrossRef
33.
go back to reference Lynch M, Maloney K, Pollin T, Streeten E, Xu H, Shuldiner A, et al. The burden of pathogenic variants in clinically actionable genes in a founder population. Am J Med Genet. 2021;185:3476–84.PubMedCrossRef Lynch M, Maloney K, Pollin T, Streeten E, Xu H, Shuldiner A, et al. The burden of pathogenic variants in clinically actionable genes in a founder population. Am J Med Genet. 2021;185:3476–84.PubMedCrossRef
34.
go back to reference Xiang J, Ding Y, Yang F, Gao A, Zhang W, Tang H, et al. Genetic analysis of children with unexplained developmental delay and/or intellectual disability by whole-exome sequencing. Front Genet. 2021;12:738561.PubMedPubMedCentralCrossRef Xiang J, Ding Y, Yang F, Gao A, Zhang W, Tang H, et al. Genetic analysis of children with unexplained developmental delay and/or intellectual disability by whole-exome sequencing. Front Genet. 2021;12:738561.PubMedPubMedCentralCrossRef
35.
go back to reference Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A, et al. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med. 2015;17:623–9.PubMedCrossRef Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A, et al. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med. 2015;17:623–9.PubMedCrossRef
36.
go back to reference Prasad A, Sdano M, Vanzo R, Mowery-Rushton P, Serrano M, Hensel C, et al. Clinical utility of exome sequencing in individuals with large homozygous regions detected by chromosomal microarray analysis. BMC Med Genet. 2018;19:46.PubMedPubMedCentralCrossRef Prasad A, Sdano M, Vanzo R, Mowery-Rushton P, Serrano M, Hensel C, et al. Clinical utility of exome sequencing in individuals with large homozygous regions detected by chromosomal microarray analysis. BMC Med Genet. 2018;19:46.PubMedPubMedCentralCrossRef
37.
go back to reference Matalonga L, Laurie S, Papakonstantinou A, Piscia D, Mereu E, Bullich G, et al. Improved diagnosis of rare disease patients through systematic detection of runs of homozygosity. J Mol Diagn. 2020;22:1205–15.PubMedCrossRef Matalonga L, Laurie S, Papakonstantinou A, Piscia D, Mereu E, Bullich G, et al. Improved diagnosis of rare disease patients through systematic detection of runs of homozygosity. J Mol Diagn. 2020;22:1205–15.PubMedCrossRef
38.
go back to reference Domogala D, Gambin T, Zemet R, Wu C, Schulze K, Yang Y, et al. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum Genom. 2021;15:72.CrossRef Domogala D, Gambin T, Zemet R, Wu C, Schulze K, Yang Y, et al. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum Genom. 2021;15:72.CrossRef
39.
go back to reference Gambin T, Liu Q, Karolak J, Grochowski C, Xie N, Wu L, et al. Low-level parental somatic mosaic SNVs in exomes from a large cohort of trios with diverse suspected Mendelian conditions. Genet Med. 2020;22:1768–76.PubMedPubMedCentralCrossRef Gambin T, Liu Q, Karolak J, Grochowski C, Xie N, Wu L, et al. Low-level parental somatic mosaic SNVs in exomes from a large cohort of trios with diverse suspected Mendelian conditions. Genet Med. 2020;22:1768–76.PubMedPubMedCentralCrossRef
40.
go back to reference Tran Mau-Them F, Duffourd Y, Vitobello A, Bruel A, Denommé-Pichon A, Nambot S, et al. Interest of exome sequencing trio-like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases. Mol Genet Genom Med. 2021;9:e1836.CrossRef Tran Mau-Them F, Duffourd Y, Vitobello A, Bruel A, Denommé-Pichon A, Nambot S, et al. Interest of exome sequencing trio-like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases. Mol Genet Genom Med. 2021;9:e1836.CrossRef
41.
go back to reference Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet. 2019;27:1–16.PubMedCrossRef Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet. 2019;27:1–16.PubMedCrossRef
42.
go back to reference Wayhelova M, Smetana J, Vallova V, Hladilkova E, Filkova H, Hanakova M, et al. The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay. BMC Med Genom. 2019;12:111.CrossRef Wayhelova M, Smetana J, Vallova V, Hladilkova E, Filkova H, Hanakova M, et al. The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay. BMC Med Genom. 2019;12:111.CrossRef
43.
go back to reference Wayhelova M, Vallova V, Broz P, Mikulasova A, Loubalova D, Filkova H, et al. Novel de novo pathogenic variant in the GNAI1 gene as a cause of severe disorders of intellectual development. J Hum Genet. 2022;67:209–14.PubMedCrossRef Wayhelova M, Vallova V, Broz P, Mikulasova A, Loubalova D, Filkova H, et al. Novel de novo pathogenic variant in the GNAI1 gene as a cause of severe disorders of intellectual development. J Hum Genet. 2022;67:209–14.PubMedCrossRef
44.
go back to reference Smetana J, Vallova V, Wayhelova M, Hladilkova E, Filkova H, Horinova V, et al. Case report: contiguous Xq22.3 deletion associated with ATS-ID syndrome. Front Genet. 2021;12:750110.PubMedPubMedCentralCrossRef Smetana J, Vallova V, Wayhelova M, Hladilkova E, Filkova H, Horinova V, et al. Case report: contiguous Xq22.3 deletion associated with ATS-ID syndrome. Front Genet. 2021;12:750110.PubMedPubMedCentralCrossRef
45.
go back to reference Szklarczyk D, Gable A, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.PubMedCrossRef Szklarczyk D, Gable A, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.PubMedCrossRef
46.
go back to reference Ma L, Chung W. Quantitative analysis of copy number variants based on real-time lightcycler PCR. Curr Protoc Hum Genet. 2014;80:7–21.PubMedCentral Ma L, Chung W. Quantitative analysis of copy number variants based on real-time lightcycler PCR. Curr Protoc Hum Genet. 2014;80:7–21.PubMedCentral
Metadata
Title
Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders
Authors
Marketa Wayhelova
Vladimira Vallova
Petr Broz
Aneta Mikulasova
Jan Smetana
Hana Dynkova Filkova
Dominika Machackova
Kristina Handzusova
Renata Gaillyova
Petr Kuglik
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2024
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-024-03056-6

Other articles of this Issue 1/2024

Orphanet Journal of Rare Diseases 1/2024 Go to the issue