Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2012

Open Access 01-12-2012 | Research article

Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study

Authors: Glyn Howatson, Michael Hoad, Stuart Goodall, Jamie Tallent, Phillip G Bell, Duncan N French

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2012

Login to get access

Abstract

Background

It is well documented that exercise-induced muscle damage (EIMD) decreases muscle function and causes soreness and discomfort. Branched-chain amino acid (BCAA) supplementation has been shown to increase protein synthesis and decrease muscle protein breakdown, however, the effects of BCAAs on recovery from damaging resistance training are unclear. Therefore, the aim of this study was to examine the effects of a BCAA supplementation on markers of muscle damage elicited via a sport specific bout of damaging exercise in trained volunteers.

Methods

Twelve males (mean ± SD age, 23 ± 2 y; stature, 178.3 ± 3.6 cm and body mass, 79.6 ± 8.4 kg) were randomly assigned to a supplement (n = 6) or placebo (n = 6) group. The damaging exercise consisted of 100 consecutive drop-jumps. Creatine kinase (CK), maximal voluntary contraction (MVC), muscle soreness (DOMS), vertical jump (VJ), thigh circumference (TC) and calf circumference (CC) were measured as markers of muscle damage. All variables were measured immediately before the damaging exercise and at 24, 48, 72 and 96 h post-exercise.

Results

A significant time effect was seen for all variables. There were significant group effects showing a reduction in CK efflux and muscle soreness in the BCAA group compared to the placebo (P<0.05). Furthermore, the recovery of MVC was greater in the BCAA group (P<0.05). The VJ, TC and CC were not different between groups.

Conclusion

The present study has shown that BCAA administered before and following damaging resistance exercise reduces indices of muscle damage and accelerates recovery in resistance-trained males. It seems likely that BCAA provided greater bioavailablity of substrate to improve protein synthesis and thereby the extent of secondary muscle damage associated with strenuous resistance exercise. Clinical Trial Registration Number: NCT01529281.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adams GR, Cheng DC, Haddad F, Baldwin KM: Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol. 2004, 96: 1613-1618. 10.1152/japplphysiol.01162.2003.CrossRefPubMed Adams GR, Cheng DC, Haddad F, Baldwin KM: Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol. 2004, 96: 1613-1618. 10.1152/japplphysiol.01162.2003.CrossRefPubMed
2.
go back to reference Higbie EJ, Cureton KJ, Warren GL, Prior BM: Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996, 81: 2173-2181.PubMed Higbie EJ, Cureton KJ, Warren GL, Prior BM: Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996, 81: 2173-2181.PubMed
3.
go back to reference Hortobagyi T, Hill JP, Houmard JA, Fraser DD, Lambert NJ, Israel RG: Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol. 1996, 80: 765-772.PubMed Hortobagyi T, Hill JP, Houmard JA, Fraser DD, Lambert NJ, Israel RG: Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol. 1996, 80: 765-772.PubMed
4.
go back to reference Howatson G, van Someren KA: The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38: 483-503. 10.2165/00007256-200838060-00004.CrossRefPubMed Howatson G, van Someren KA: The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38: 483-503. 10.2165/00007256-200838060-00004.CrossRefPubMed
5.
go back to reference Howatson G, Hough P, Pattison J, Hill JA, Blagrove R, Glaister M, Thompson KG: Trekking poles reduce exercise-induced muscle injury during mountain walking. Med Sci Sports Exerc. 2010, 43: 140-145.CrossRef Howatson G, Hough P, Pattison J, Hill JA, Blagrove R, Glaister M, Thompson KG: Trekking poles reduce exercise-induced muscle injury during mountain walking. Med Sci Sports Exerc. 2010, 43: 140-145.CrossRef
6.
go back to reference Paschalis V, Nikolaidis MG, Giakas G, Jamurtas AZ, Pappas A, Koutedakis Y: The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs. Muscle Nerve. 2007, 35: 496-503. 10.1002/mus.20723.CrossRefPubMed Paschalis V, Nikolaidis MG, Giakas G, Jamurtas AZ, Pappas A, Koutedakis Y: The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs. Muscle Nerve. 2007, 35: 496-503. 10.1002/mus.20723.CrossRefPubMed
7.
go back to reference Leeder J, Gissane C, van Someren K, Gregson W, Howatson G: Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012, 46: 233-240. 10.1136/bjsports-2011-090061.CrossRefPubMed Leeder J, Gissane C, van Someren K, Gregson W, Howatson G: Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012, 46: 233-240. 10.1136/bjsports-2011-090061.CrossRefPubMed
8.
go back to reference Close GL, Ashton T, Cable T, Doran D, Holloway C, McArdle F, MacLaren DP: Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr. 2006, 95: 976-981. 10.1079/BJN20061732.CrossRefPubMed Close GL, Ashton T, Cable T, Doran D, Holloway C, McArdle F, MacLaren DP: Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr. 2006, 95: 976-981. 10.1079/BJN20061732.CrossRefPubMed
9.
go back to reference Connolly DA, Lauzon C, Agnew J, Dunn M, Reed B: The effects of vitamin c supplementation on symptoms of delayed onset muscle soreness. J Sports Med Phys Fitness. 2006, 46: 462-467.PubMed Connolly DA, Lauzon C, Agnew J, Dunn M, Reed B: The effects of vitamin c supplementation on symptoms of delayed onset muscle soreness. J Sports Med Phys Fitness. 2006, 46: 462-467.PubMed
10.
go back to reference Baldwin Lanier A: Use of nonsteroidal anti-inflammatory drugs following exercise-induced muscle injury. Sports Med. 2003, 33: 177-185. 10.2165/00007256-200333030-00002.CrossRefPubMed Baldwin Lanier A: Use of nonsteroidal anti-inflammatory drugs following exercise-induced muscle injury. Sports Med. 2003, 33: 177-185. 10.2165/00007256-200333030-00002.CrossRefPubMed
11.
go back to reference Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, Shave RE, Howatson SA: Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010, 20: 843-852. 10.1111/j.1600-0838.2009.01005.x.CrossRefPubMed Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, Shave RE, Howatson SA: Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010, 20: 843-852. 10.1111/j.1600-0838.2009.01005.x.CrossRefPubMed
12.
go back to reference Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, Baar K, Tipton KD: The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011, 589: 4011-4025. 10.1113/jphysiol.2011.211888.PubMedCentralCrossRefPubMed Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, Baar K, Tipton KD: The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011, 589: 4011-4025. 10.1113/jphysiol.2011.211888.PubMedCentralCrossRefPubMed
13.
go back to reference Bianchi G, Marzocchi R, Agostini F, Marchesini G: Update on nutritional supplementation with branched-chain amino acids. Curr Opin Clin Nutr Metab Care. 2005, 8: 83-87. 10.1097/00075197-200501000-00013.CrossRefPubMed Bianchi G, Marzocchi R, Agostini F, Marchesini G: Update on nutritional supplementation with branched-chain amino acids. Curr Opin Clin Nutr Metab Care. 2005, 8: 83-87. 10.1097/00075197-200501000-00013.CrossRefPubMed
14.
go back to reference da Luz CR, Nicastro H, Zanchi NE, Chaves DF, Lancha AH: Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans. J Int Soc Sports Nutr. 2011, 8: 23-27. 10.1186/1550-2783-8-23.PubMedCentralCrossRefPubMed da Luz CR, Nicastro H, Zanchi NE, Chaves DF, Lancha AH: Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans. J Int Soc Sports Nutr. 2011, 8: 23-27. 10.1186/1550-2783-8-23.PubMedCentralCrossRefPubMed
15.
go back to reference Matsumoto K, Koba T, Hamada K, Sakurai M, Higuchi T, Miyata H: Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J Sports Med Phys Fitness. 2009, 49: 424-431.PubMed Matsumoto K, Koba T, Hamada K, Sakurai M, Higuchi T, Miyata H: Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J Sports Med Phys Fitness. 2009, 49: 424-431.PubMed
16.
go back to reference Coombes JS, McNaughton LR: Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness. 2000, 40: 240-246.PubMed Coombes JS, McNaughton LR: Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness. 2000, 40: 240-246.PubMed
17.
go back to reference Greer BK, Woodard JL, White JP, Arguello EM, Haymes EM: Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int J Sport Nutr Exerc Metab. 2007, 17: 595-607.PubMed Greer BK, Woodard JL, White JP, Arguello EM, Haymes EM: Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int J Sport Nutr Exerc Metab. 2007, 17: 595-607.PubMed
18.
go back to reference Koba T, Hamada K, Sakurai M, Matsumoto K, Hayase H, Imaizumi K, Tsujimoto H, Mitsuzono R: Branched-chain amino acids supplementation attenuates the accumulation of blood lactate dehydrogenase during distance running. J Sports Med Phys Fitness. 2007, 47: 316-322.PubMed Koba T, Hamada K, Sakurai M, Matsumoto K, Hayase H, Imaizumi K, Tsujimoto H, Mitsuzono R: Branched-chain amino acids supplementation attenuates the accumulation of blood lactate dehydrogenase during distance running. J Sports Med Phys Fitness. 2007, 47: 316-322.PubMed
19.
go back to reference Nosaka K, Sacco P, Mawatari K: Effects of amino acid supplementation on muscle soreness and damage. Int J Sport Nutr Exerc Metab. 2006, 16: 620-635.PubMed Nosaka K, Sacco P, Mawatari K: Effects of amino acid supplementation on muscle soreness and damage. Int J Sport Nutr Exerc Metab. 2006, 16: 620-635.PubMed
20.
go back to reference Jackman SR, Witard OC, Jeukendrup AE, Tipton KD: Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc. 2010, 42: 962-970. 10.1249/MSS.0b013e3181c1b798.CrossRefPubMed Jackman SR, Witard OC, Jeukendrup AE, Tipton KD: Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc. 2010, 42: 962-970. 10.1249/MSS.0b013e3181c1b798.CrossRefPubMed
21.
go back to reference Shimomura Y, Inaguma A, Watanabe S, Yamamoto Y, Muramatsu Y, Bajotto G, Sato J, Shimomura N, Kobayashi H, Mawatari K: Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab. 2010, 20: 236-244.PubMed Shimomura Y, Inaguma A, Watanabe S, Yamamoto Y, Muramatsu Y, Bajotto G, Sato J, Shimomura N, Kobayashi H, Mawatari K: Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab. 2010, 20: 236-244.PubMed
22.
go back to reference Borsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR: Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol. 2004, 96: 674-678. 10.1152/japplphysiol.00333.2003.CrossRefPubMed Borsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR: Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol. 2004, 96: 674-678. 10.1152/japplphysiol.00333.2003.CrossRefPubMed
23.
go back to reference Stock MS, Young JC, Golding LA, Kruskall LJ, Tandy RD, Conway-Klaassen JM, Beck TW: The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. J Strength Cond Res. 2010, 24: 2211-2219. 10.1519/JSC.0b013e3181dc3a10.CrossRefPubMed Stock MS, Young JC, Golding LA, Kruskall LJ, Tandy RD, Conway-Klaassen JM, Beck TW: The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. J Strength Cond Res. 2010, 24: 2211-2219. 10.1519/JSC.0b013e3181dc3a10.CrossRefPubMed
24.
go back to reference Sharp CP, Pearson DR: Amino acid supplements and recovery from high-intensity resistance training. J Strength Cond Res. 2010, 24: 1125-1130. 10.1519/JSC.0b013e3181c7c655.CrossRefPubMed Sharp CP, Pearson DR: Amino acid supplements and recovery from high-intensity resistance training. J Strength Cond Res. 2010, 24: 1125-1130. 10.1519/JSC.0b013e3181c7c655.CrossRefPubMed
25.
go back to reference van Someren KA, Edwards AJ, Howatson G: Supplementation with beta-hydroxy-beta-methylbutyrate (hmb) and alpha-ketoisocaproic acid (kic) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab. 2005, 15: 413-424.PubMed van Someren KA, Edwards AJ, Howatson G: Supplementation with beta-hydroxy-beta-methylbutyrate (hmb) and alpha-ketoisocaproic acid (kic) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab. 2005, 15: 413-424.PubMed
26.
go back to reference Blomstrand E, Andersson S, Hassmen P, Ekblom B, Newsholme EA: Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiol Scand. 1995, 153: 87-96. 10.1111/j.1748-1716.1995.tb09839.x.CrossRefPubMed Blomstrand E, Andersson S, Hassmen P, Ekblom B, Newsholme EA: Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiol Scand. 1995, 153: 87-96. 10.1111/j.1748-1716.1995.tb09839.x.CrossRefPubMed
27.
go back to reference Goodall S, Howatson G: The effects of multiple cold water immersions on indices of muscle damage. Journal of Sports Science and Medicine. 2008, 7: 235-241.PubMedCentralPubMed Goodall S, Howatson G: The effects of multiple cold water immersions on indices of muscle damage. Journal of Sports Science and Medicine. 2008, 7: 235-241.PubMedCentralPubMed
28.
go back to reference Miyama M, Nosaka K: Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J Strength Cond Res. 2004, 18: 206-211.PubMed Miyama M, Nosaka K: Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J Strength Cond Res. 2004, 18: 206-211.PubMed
29.
go back to reference Howatson G, van Someren KA: Evidence of a contralateral repeated bout effect after maximal eccentric contractions. Eur J Appl Physiol. 2007, 101: 207-214. 10.1007/s00421-007-0489-5.CrossRefPubMed Howatson G, van Someren KA: Evidence of a contralateral repeated bout effect after maximal eccentric contractions. Eur J Appl Physiol. 2007, 101: 207-214. 10.1007/s00421-007-0489-5.CrossRefPubMed
30.
go back to reference Byrne C, Eston R: The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci. 2002, 20: 417-425. 10.1080/026404102317366672.CrossRefPubMed Byrne C, Eston R: The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci. 2002, 20: 417-425. 10.1080/026404102317366672.CrossRefPubMed
31.
go back to reference McHugh MP: Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003, 13: 88-97. 10.1034/j.1600-0838.2003.02477.x.CrossRefPubMed McHugh MP: Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003, 13: 88-97. 10.1034/j.1600-0838.2003.02477.x.CrossRefPubMed
32.
go back to reference Howatson G, Van Someren K, Hortobagyi T: Repeated bout effect after maximal eccentric exercise. Int J Sports Med. 2007, 28: 557-563. 10.1055/s-2007-964866.CrossRefPubMed Howatson G, Van Someren K, Hortobagyi T: Repeated bout effect after maximal eccentric exercise. Int J Sports Med. 2007, 28: 557-563. 10.1055/s-2007-964866.CrossRefPubMed
33.
go back to reference Shimomura Y, Kobayashi H, Mawatari K, Akita K, Inaguma A, Watanabe S, Bajotto G, Sato J: Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women. J Nutr Sci Vitaminol. 2009, 55: 288-291. 10.3177/jnsv.55.288.CrossRefPubMed Shimomura Y, Kobayashi H, Mawatari K, Akita K, Inaguma A, Watanabe S, Bajotto G, Sato J: Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women. J Nutr Sci Vitaminol. 2009, 55: 288-291. 10.3177/jnsv.55.288.CrossRefPubMed
34.
go back to reference Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K: Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 2006, 136: 529S-532S.PubMed Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K: Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 2006, 136: 529S-532S.PubMed
35.
go back to reference Malm C: Exercise-induced muscle damage and inflammation: Fact or fiction?. Acta Physiol Scand. 2001, 171: 233-239. 10.1046/j.1365-201x.2001.00825.x.CrossRefPubMed Malm C: Exercise-induced muscle damage and inflammation: Fact or fiction?. Acta Physiol Scand. 2001, 171: 233-239. 10.1046/j.1365-201x.2001.00825.x.CrossRefPubMed
36.
go back to reference Proske U, Morgan DL: Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001, 537: 333-345. 10.1111/j.1469-7793.2001.00333.x.PubMedCentralCrossRefPubMed Proske U, Morgan DL: Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001, 537: 333-345. 10.1111/j.1469-7793.2001.00333.x.PubMedCentralCrossRefPubMed
37.
go back to reference Sugita M, Ohtani M, Ishii N, Maruyama K, Kobayashi K: Effect of a selected amino acid mixture on the recovery from muscle fatigue during and after eccentric contraction exercise training. Biosci Biotechnol Biochem. 2003, 67: 372-375. 10.1271/bbb.67.372.CrossRefPubMed Sugita M, Ohtani M, Ishii N, Maruyama K, Kobayashi K: Effect of a selected amino acid mixture on the recovery from muscle fatigue during and after eccentric contraction exercise training. Biosci Biotechnol Biochem. 2003, 67: 372-375. 10.1271/bbb.67.372.CrossRefPubMed
38.
go back to reference Nosaka K, Sakamoto K, Newton M, Sacco P: How long does the protective effect on eccentric exercise-induced muscle damage last?. Med Sci Sports Exerc. 2001, 33: 1490-1495. 10.1097/00005768-200109000-00011.CrossRefPubMed Nosaka K, Sakamoto K, Newton M, Sacco P: How long does the protective effect on eccentric exercise-induced muscle damage last?. Med Sci Sports Exerc. 2001, 33: 1490-1495. 10.1097/00005768-200109000-00011.CrossRefPubMed
39.
go back to reference Cockburn E, Stevenson E, Hayes PR, Robson-Ansley P, Howatson G: Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl Physiol Nutr Metab. 2010, 35: 270-277. 10.1139/H10-017.CrossRefPubMed Cockburn E, Stevenson E, Hayes PR, Robson-Ansley P, Howatson G: Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl Physiol Nutr Metab. 2010, 35: 270-277. 10.1139/H10-017.CrossRefPubMed
40.
go back to reference Shimomura Y, Murakami T, Nakai N, Nagasaki M, Obayashi M, Li Z, Xu M, Sato Y, Kato T, Shimomura N, Fujitsuka N, Tanaka K, Sato M: Suppression of glycogen consumption during acute exercise by dietary branched-chain amino acids in rats. J Nutr Sci Vitaminol. 2000, 46: 71-77. 10.3177/jnsv.46.71.CrossRefPubMed Shimomura Y, Murakami T, Nakai N, Nagasaki M, Obayashi M, Li Z, Xu M, Sato Y, Kato T, Shimomura N, Fujitsuka N, Tanaka K, Sato M: Suppression of glycogen consumption during acute exercise by dietary branched-chain amino acids in rats. J Nutr Sci Vitaminol. 2000, 46: 71-77. 10.3177/jnsv.46.71.CrossRefPubMed
Metadata
Title
Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study
Authors
Glyn Howatson
Michael Hoad
Stuart Goodall
Jamie Tallent
Phillip G Bell
Duncan N French
Publication date
01-12-2012
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-9-20

Other articles of this Issue 1/2012

Journal of the International Society of Sports Nutrition 1/2012 Go to the issue