Skip to main content
Top
Published in: Sports Medicine 1/2019

01-01-2019 | Systematic Review

Exercise Dose and Weight Loss in Adolescents with Overweight–Obesity: A Meta-Regression

Authors: Lee Stoner, Michael W. Beets, Keith Brazendale, Justin B. Moore, R. Glenn Weaver

Published in: Sports Medicine | Issue 1/2019

Login to get access

Abstract

Background

A recent meta-analysis reported that exercise interventions are effective for promoting weight loss in adolescents with overweight–obesity. However, the meta-analysis did not investigate whether there is an optimal exercise dose for promoting weight loss in overweight and obese adolescents. A common method of expressing exercise dose is the calculation of metabolic equivalents (METs), expressed as MET-h/week.

Objectives

The objective of this study was to determine the association between exercise dose (MET-h/week) and weight loss [body weight, body mass index (BMI)] in adolescents with overweight–obesity.

Data Sources

Trials included in the original meta-analysis were extracted, and a subsequent search to identify studies published between May 2015 and May 2018 was conducted. The search included electronic databases (PubMed, Web of Science SPORTDiscus, Google Scholar) and the reference lists of eligible articles and relevant reviews.

Study Selection

The inclusion criteria were as follows: (i) randomized controlled trial; (ii) structured exercise intervention, alone or combined with other intervention components; (iii) control group received no structured exercise or behavioral modification designed to increase physical activity; (iv) participants overweight or obese (BMI ≥ 85th percentile); and (v) participants aged between 10 and 19 years.

Appraisal and Synthesis Methods

Fifteen trials were extracted from the original meta-analysis. The current search identified an additional five trials (three articles). Data from 20 trials (16 articles) involving 1091 participants (54% female, 17% not reported) were included in the analysis. Effect sizes were reported as mean difference, and random effects meta-regression quantified the association between exercise dose and weight loss. Study quality was assessed using a modified Jadad’s scale.

Results

Total body weight change (decrease) ranged from − 2.7 to 19.3 (median 2.5) kg, and BMI change (decrease) ranged from − 1.6 to 6.3 (median 0.9) kg/m2. MET-h/week ranged from 5.4 to 36.0 (median 6.0). Each MET-h/week was associated with a 0.13 kg/m2 (95% confidence interval [CI] 0.08–0.19) and 0.33 kg (95% CI 0.08–0.59) decrease in BMI and body weight, respectively.

Limitations

The prescribed exercise dose for the majority of trials was low. As such, we were unable to discern whether there was an optimal exercise dose for weight loss (i.e., if the association between dose and weight loss was non-linear). Additionally, most trials had small sample sizes (median n = 34) and 17 trials had methodological limitations.

Conclusions

Each MET-h/week was associated with a 0.13 kg/m2 and 0.33 kg decrease in BMI and body weight, respectively. While this relationship appears to be linear, i.e., no optimal exercise dose, it should be emphasized that the exercise prescription dose for the majority of trials was low. Subsequent trials, with greater exercise dosage, are required to determine whether there is an ‘optimal’ dose for promoting weight loss in adolescents with overweight–obesity. However, the current findings lend support to the use of exercise prescription for promoting weight loss and improving health outcomes in this population.
Literature
1.
go back to reference Stoner L, Rowlands D, Morrison A, et al. Efficacy of exercise intervention for weight loss in overweight and obese adolescents: meta-analysis and implications. Sports Med. 2016;46(11):1737–51.CrossRefPubMed Stoner L, Rowlands D, Morrison A, et al. Efficacy of exercise intervention for weight loss in overweight and obese adolescents: meta-analysis and implications. Sports Med. 2016;46(11):1737–51.CrossRefPubMed
2.
go back to reference Swift DL, Johannsen NM, Lavie CJ, et al. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7.CrossRefPubMed Swift DL, Johannsen NM, Lavie CJ, et al. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7.CrossRefPubMed
3.
go back to reference Swift DL, McGee JE, Earnest CP, et al. The effects of exercise and physical activity on weight loss and maintenance. Prog Cardiovasc Dis. 2018;61(2):206–13.CrossRefPubMed Swift DL, McGee JE, Earnest CP, et al. The effects of exercise and physical activity on weight loss and maintenance. Prog Cardiovasc Dis. 2018;61(2):206–13.CrossRefPubMed
5.
go back to reference American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2014. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2014.
7.
go back to reference Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med. 2009;3(3):e123–30.PubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med. 2009;3(3):e123–30.PubMedPubMedCentral
8.
go back to reference Stovold E, Beecher D, Foxlee R, et al. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram. Syst Rev. 2014;29(3):54.CrossRef Stovold E, Beecher D, Foxlee R, et al. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram. Syst Rev. 2014;29(3):54.CrossRef
10.
go back to reference Higgins J, Green S, Cochrane Collaboration, editors. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley; 2008. Higgins J, Green S, Cochrane Collaboration, editors. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley; 2008.
11.
go back to reference Crowther M, Lim W, Crowther MA. Systematic review and meta-analysis methodology. Blood. 2010;116(17):3140–6.CrossRefPubMed Crowther M, Lim W, Crowther MA. Systematic review and meta-analysis methodology. Blood. 2010;116(17):3140–6.CrossRefPubMed
12.
go back to reference Butte NF, Watson KB, Ridley K, et al. A youth compendium of physical activities: activity codes and metabolic intensities. Med Sci Sports Exerc. 2018;50(2):246–56.CrossRefPubMed Butte NF, Watson KB, Ridley K, et al. A youth compendium of physical activities: activity codes and metabolic intensities. Med Sci Sports Exerc. 2018;50(2):246–56.CrossRefPubMed
13.
go back to reference Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111.CrossRefPubMed Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111.CrossRefPubMed
16.
go back to reference Balagopal P, George D, Patton N, et al. Lifestyle-only intervention attenuates the inflammatory state associated with obesity: a randomized controlled study in adolescents. J Pediatr. 2005;146(3):342–8.CrossRefPubMed Balagopal P, George D, Patton N, et al. Lifestyle-only intervention attenuates the inflammatory state associated with obesity: a randomized controlled study in adolescents. J Pediatr. 2005;146(3):342–8.CrossRefPubMed
17.
go back to reference Ben Ounis O, Elloumi M, Zouhal H, et al. Effect of individualized exercise training combined with diet restriction on inflammatory markers and IGF-1/IGFBP-3 in obese children. Ann Nutr Metab. 2010;56(4):260–6.CrossRefPubMed Ben Ounis O, Elloumi M, Zouhal H, et al. Effect of individualized exercise training combined with diet restriction on inflammatory markers and IGF-1/IGFBP-3 in obese children. Ann Nutr Metab. 2010;56(4):260–6.CrossRefPubMed
18.
go back to reference Davis JN, Kelly LA, Lane CJ, et al. Randomized control trial to improve adiposity and insulin resistance in overweight Latino adolescents. Obesity (Silver Spring). 2009;17(8):1542–8.CrossRef Davis JN, Kelly LA, Lane CJ, et al. Randomized control trial to improve adiposity and insulin resistance in overweight Latino adolescents. Obesity (Silver Spring). 2009;17(8):1542–8.CrossRef
19.
go back to reference Davis JN, Tung A, Chak SS, et al. Aerobic and strength training reduces adiposity in overweight Latina adolescents. Med Sci Sports Exerc. 2009;41(7):1494–503.CrossRefPubMedPubMedCentral Davis JN, Tung A, Chak SS, et al. Aerobic and strength training reduces adiposity in overweight Latina adolescents. Med Sci Sports Exerc. 2009;41(7):1494–503.CrossRefPubMedPubMedCentral
20.
go back to reference Kim ES, Im JA, Kim KC, et al. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity (Silver Spring). 2007;15(12):3023–30.CrossRef Kim ES, Im JA, Kim KC, et al. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity (Silver Spring). 2007;15(12):3023–30.CrossRef
21.
go back to reference Lee KJ, Shin YA, Lee KY, et al. Aerobic exercise training-induced decrease in plasma visfatin and insulin resistance in obese female adolescents. Int J Sport Nutr Exerc Metab. 2010;20(4):275–81.CrossRefPubMed Lee KJ, Shin YA, Lee KY, et al. Aerobic exercise training-induced decrease in plasma visfatin and insulin resistance in obese female adolescents. Int J Sport Nutr Exerc Metab. 2010;20(4):275–81.CrossRefPubMed
22.
go back to reference Melnyk BM, Small L, Morrison-Beedy D, et al. The COPE Healthy Lifestyles TEEN program: feasibility, preliminary efficacy, & lessons learned from an after school group intervention with overweight adolescents. J Pediatr Health Care. 2007;21(5):315–22.CrossRefPubMed Melnyk BM, Small L, Morrison-Beedy D, et al. The COPE Healthy Lifestyles TEEN program: feasibility, preliminary efficacy, & lessons learned from an after school group intervention with overweight adolescents. J Pediatr Health Care. 2007;21(5):315–22.CrossRefPubMed
23.
go back to reference Meyer AA, Kundt G, Lenschow U, et al. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol. 2006;48(9):1865–70.CrossRefPubMed Meyer AA, Kundt G, Lenschow U, et al. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol. 2006;48(9):1865–70.CrossRefPubMed
24.
go back to reference Rocchini AP, Katch V, Schork A, et al. Insulin and blood pressure during weight loss in obese adolescents. Hypertension. 1987;10(3):267–73.CrossRefPubMed Rocchini AP, Katch V, Schork A, et al. Insulin and blood pressure during weight loss in obese adolescents. Hypertension. 1987;10(3):267–73.CrossRefPubMed
25.
go back to reference Sun MX, Huang XQ, Yan Y, et al. One-hour after-school exercise ameliorates central adiposity and lipids in overweight Chinese adolescents: a randomized controlled trial. Chin Med J (Engl). 2011;124(3):323–9. Sun MX, Huang XQ, Yan Y, et al. One-hour after-school exercise ameliorates central adiposity and lipids in overweight Chinese adolescents: a randomized controlled trial. Chin Med J (Engl). 2011;124(3):323–9.
26.
go back to reference Toulabi T, Khosh Niyat Nikoo M, Amini F, et al. The influence of a behavior modification interventional program on body mass index in obese adolescents. J Formos Med Assoc. 2012;111(3):153–9.CrossRefPubMed Toulabi T, Khosh Niyat Nikoo M, Amini F, et al. The influence of a behavior modification interventional program on body mass index in obese adolescents. J Formos Med Assoc. 2012;111(3):153–9.CrossRefPubMed
27.
go back to reference Tsang TW, Kohn M, Chow CM, et al. A randomised placebo-exercise controlled trial of Kung Fu training for improvements in body composition in overweight/obese adolescents: the “Martial Fitness” study. J Sports Sci Med. 2009;8(1):97–106.PubMedPubMedCentral Tsang TW, Kohn M, Chow CM, et al. A randomised placebo-exercise controlled trial of Kung Fu training for improvements in body composition in overweight/obese adolescents: the “Martial Fitness” study. J Sports Sci Med. 2009;8(1):97–106.PubMedPubMedCentral
28.
go back to reference Wong PC, Chia MY, Tsou IY, et al. Effects of a 12-week exercise training programme on aerobic fitness, body composition, blood lipids and C-reactive protein in adolescents with obesity. Ann Acad Med Singap. 2008;37(4):286–93.PubMed Wong PC, Chia MY, Tsou IY, et al. Effects of a 12-week exercise training programme on aerobic fitness, body composition, blood lipids and C-reactive protein in adolescents with obesity. Ann Acad Med Singap. 2008;37(4):286–93.PubMed
29.
go back to reference Son WM, Sung KD, Bharath LP, et al. Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls. Clin Exp Hypertens. 2017;39(6):546–52.CrossRefPubMed Son WM, Sung KD, Bharath LP, et al. Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls. Clin Exp Hypertens. 2017;39(6):546–52.CrossRefPubMed
30.
go back to reference Alberga AS, Prud’homme D, Sigal RJ, et al. Effects of aerobic training, resistance training, or both on cardiorespiratory and musculoskeletal fitness in adolescents with obesity: the HEARTY trial. Appl Physiol Nutr Metab. 2016;41(3):255–65.CrossRefPubMed Alberga AS, Prud’homme D, Sigal RJ, et al. Effects of aerobic training, resistance training, or both on cardiorespiratory and musculoskeletal fitness in adolescents with obesity: the HEARTY trial. Appl Physiol Nutr Metab. 2016;41(3):255–65.CrossRefPubMed
31.
go back to reference Staiano AE, Marker AM, Beyl RA, et al. A randomized controlled trial of dance exergaming for exercise training in overweight and obese adolescent girls. Pediatr Obes. 2017;12(2):120–8.CrossRefPubMed Staiano AE, Marker AM, Beyl RA, et al. A randomized controlled trial of dance exergaming for exercise training in overweight and obese adolescent girls. Pediatr Obes. 2017;12(2):120–8.CrossRefPubMed
32.
go back to reference Pbert L, Druker S, Barton B, et al. A school-based program for overweight and obese adolescents: a randomized controlled trial. J Sch Health. 2016;86(10):699–708.CrossRefPubMedPubMedCentral Pbert L, Druker S, Barton B, et al. A school-based program for overweight and obese adolescents: a randomized controlled trial. J Sch Health. 2016;86(10):699–708.CrossRefPubMedPubMedCentral
33.
go back to reference Sutherland R, Reeves P, Campbell E, et al. Cost effectiveness of a multi-component school-based physical activity intervention targeting adolescents: the ‘Physical Activity 4 Everyone’ cluster randomized trial. Int J Behav Nutr Phys Act. 2016;22(13):94.CrossRef Sutherland R, Reeves P, Campbell E, et al. Cost effectiveness of a multi-component school-based physical activity intervention targeting adolescents: the ‘Physical Activity 4 Everyone’ cluster randomized trial. Int J Behav Nutr Phys Act. 2016;22(13):94.CrossRef
34.
go back to reference Lubans DR, Smith JJ, Plotnikoff RC, et al. Assessing the sustained impact of a school-based obesity prevention program for adolescent boys: the ATLAS cluster randomized controlled trial. Int J Behav Nutr Phys Act. 2016;20(13):92.CrossRef Lubans DR, Smith JJ, Plotnikoff RC, et al. Assessing the sustained impact of a school-based obesity prevention program for adolescent boys: the ATLAS cluster randomized controlled trial. Int J Behav Nutr Phys Act. 2016;20(13):92.CrossRef
35.
go back to reference Bland JM, Altman DG. Correlation in restricted ranges of data. BMJ. 2011;11(342):d556.CrossRef Bland JM, Altman DG. Correlation in restricted ranges of data. BMJ. 2011;11(342):d556.CrossRef
36.
go back to reference Finkelstein EA, Trogdon JG, Cohen JW, et al. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff. 2009;28(5):w822–31.CrossRef Finkelstein EA, Trogdon JG, Cohen JW, et al. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff. 2009;28(5):w822–31.CrossRef
37.
go back to reference Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.CrossRefPubMed Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.CrossRefPubMed
38.
go back to reference Rhodes RE, Warburton DE, Murray H. Characteristics of physical activity guidelines and their effect on adherence: a review of randomized trials. Sports Med. 2009;39(5):355–75.CrossRefPubMed Rhodes RE, Warburton DE, Murray H. Characteristics of physical activity guidelines and their effect on adherence: a review of randomized trials. Sports Med. 2009;39(5):355–75.CrossRefPubMed
39.
go back to reference Blair SN, Kohl HW 3rd, Barlow CE, et al. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273(14):1093–8.CrossRefPubMed Blair SN, Kohl HW 3rd, Barlow CE, et al. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273(14):1093–8.CrossRefPubMed
40.
go back to reference Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, et al. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.CrossRefPubMed Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, et al. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.CrossRefPubMed
41.
go back to reference Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.CrossRefPubMed Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.CrossRefPubMed
42.
go back to reference Lavie CJ, Arena R, Swift DL, et al. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res. 2015;117(2):207–19.CrossRefPubMedPubMedCentral Lavie CJ, Arena R, Swift DL, et al. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res. 2015;117(2):207–19.CrossRefPubMedPubMedCentral
Metadata
Title
Exercise Dose and Weight Loss in Adolescents with Overweight–Obesity: A Meta-Regression
Authors
Lee Stoner
Michael W. Beets
Keith Brazendale
Justin B. Moore
R. Glenn Weaver
Publication date
01-01-2019
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 1/2019
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-018-01040-2

Other articles of this Issue 1/2019

Sports Medicine 1/2019 Go to the issue