Skip to main content
Top
Published in: Sports Medicine 8/2018

01-08-2018 | Current Opinion

Exercise Blood Pressure Guidelines: Time to Re-evaluate What is Normal and Exaggerated?

Authors: Katharine D. Currie, John S. Floras, Andre La Gerche, Jack M. Goodman

Published in: Sports Medicine | Issue 8/2018

Login to get access

Abstract

Blood pressure responses to graded exercise testing can provide important diagnostic and prognostic information. While published guidelines outline what constitutes a “normal” and “abnormal” (i.e., exaggerated) blood pressure response to exercise testing, the widespread use of exaggerated blood pressure responses as a clinical tool is limited due to sparse and inconsistent data. A review of the original sources from these guidelines reveals an overall lack of empirical evidence to support both the normal blood pressure responses and their upper limits. In this current opinion, we critically evaluate the current exercise blood pressure guidelines including (1) the normal blood pressure responses to graded exercise testing; (2) the upper limits of this normal response; (3) the blood pressure criteria for test termination; and (4) the thresholds for exaggerated blood pressure responses. We provide evidence that exercise blood pressure responses vary according to subject characteristics, and subsequently a re-evaluation of what constitutes normal and abnormal responses is necessary to strengthen the clinical utility of this assessment.
Literature
1.
go back to reference Sharman JE, LaGerche A. Exercise blood pressure: clinical relevance and correct measurement. J Hum Hypertens. 2015;29(6):351–8.CrossRefPubMed Sharman JE, LaGerche A. Exercise blood pressure: clinical relevance and correct measurement. J Hum Hypertens. 2015;29(6):351–8.CrossRefPubMed
2.
go back to reference American College of Sports Medicine. ACSM’s resource manual for guidelines for exercise testing and prescription. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. American College of Sports Medicine. ACSM’s resource manual for guidelines for exercise testing and prescription. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.
3.
go back to reference Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934.CrossRefPubMed Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934.CrossRefPubMed
4.
go back to reference Fox SM 3rd, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404–32.PubMed Fox SM 3rd, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404–32.PubMed
5.
go back to reference Naughton J, Haider R. Methods of exercise testing. In: Naughton J, Hellerstein HK, Mohler IC, editors. Exercise testing and exercise training in coronary heart disease. New York: Academic Press; 1973. p. 79. Naughton J, Haider R. Methods of exercise testing. In: Naughton J, Hellerstein HK, Mohler IC, editors. Exercise testing and exercise training in coronary heart disease. New York: Academic Press; 1973. p. 79.
6.
go back to reference Schultz MG, Otahal P, Cleland VJ, Blizzard L, Marwick TH, Sharman JE. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: a systematic review and meta-analysis. Am J Hypertens. 2013;26(3):357–66.CrossRefPubMed Schultz MG, Otahal P, Cleland VJ, Blizzard L, Marwick TH, Sharman JE. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: a systematic review and meta-analysis. Am J Hypertens. 2013;26(3):357–66.CrossRefPubMed
7.
go back to reference Kayrak M, Bacaksiz A, Vatankulu MA, Ayhan SS, Kaya Z, Ari H, et al. Exaggerated blood pressure response to exercise—a new portent of masked hypertension. Clin Exp Hypertens. 2010;32(8):560–8.CrossRefPubMed Kayrak M, Bacaksiz A, Vatankulu MA, Ayhan SS, Kaya Z, Ari H, et al. Exaggerated blood pressure response to exercise—a new portent of masked hypertension. Clin Exp Hypertens. 2010;32(8):560–8.CrossRefPubMed
8.
go back to reference Wilson NV, Meyer BM. Early prediction of hypertension using exercise blood pressure. Prev Med. 1981;10(1):62–8.CrossRefPubMed Wilson NV, Meyer BM. Early prediction of hypertension using exercise blood pressure. Prev Med. 1981;10(1):62–8.CrossRefPubMed
9.
go back to reference Matthews CE, Pate RR, Jackson KL, Ward DS, Macera CA, Kohl HW, et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J Clin Epidemiol. 1998;51(1):29–35.CrossRefPubMed Matthews CE, Pate RR, Jackson KL, Ward DS, Macera CA, Kohl HW, et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J Clin Epidemiol. 1998;51(1):29–35.CrossRefPubMed
10.
go back to reference Miyai N, Arita M, Morioka I, Miyashita K, Nishio I, Takeda S. Exercise BP response in subjects with high-normal BP: exaggerated blood pressure response to exercise and risk of future hypertension in subjects with high-normal blood pressure. J Am Coll Cardiol. 2000;36(5):1626–31.CrossRefPubMed Miyai N, Arita M, Morioka I, Miyashita K, Nishio I, Takeda S. Exercise BP response in subjects with high-normal BP: exaggerated blood pressure response to exercise and risk of future hypertension in subjects with high-normal blood pressure. J Am Coll Cardiol. 2000;36(5):1626–31.CrossRefPubMed
11.
go back to reference Miyai N, Arita M, Miyashita K, Morioka I, Shiraishi T, Nishio I. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension. 2002;39(3):761–6.CrossRefPubMed Miyai N, Arita M, Miyashita K, Morioka I, Shiraishi T, Nishio I. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension. 2002;39(3):761–6.CrossRefPubMed
12.
go back to reference Singh JP, Larson MG, Manolio TA, O’Donnell CJ, Lauer M, Evans JC, et al. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension. The Framingham heart study. Circulation. 1999;99(14):1831–6.CrossRefPubMed Singh JP, Larson MG, Manolio TA, O’Donnell CJ, Lauer M, Evans JC, et al. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension. The Framingham heart study. Circulation. 1999;99(14):1831–6.CrossRefPubMed
13.
go back to reference Allison TG, Cordeiro MA, Miller TD, Daida H, Squires RW, Gau GT. Prognostic significance of exercise-induced systemic hypertension in healthy subjects. Am J Cardiol. 1999;83(3):371–5.CrossRefPubMed Allison TG, Cordeiro MA, Miller TD, Daida H, Squires RW, Gau GT. Prognostic significance of exercise-induced systemic hypertension in healthy subjects. Am J Cardiol. 1999;83(3):371–5.CrossRefPubMed
14.
go back to reference Sharabi Y, Ben-Cnaan R, Hanin A, Martonovitch G, Grossman E. The significance of hypertensive response to exercise as a predictor of hypertension and cardiovascular disease. J Hum Hypertens. 2001;15(5):353–6.CrossRefPubMed Sharabi Y, Ben-Cnaan R, Hanin A, Martonovitch G, Grossman E. The significance of hypertensive response to exercise as a predictor of hypertension and cardiovascular disease. J Hum Hypertens. 2001;15(5):353–6.CrossRefPubMed
15.
go back to reference Odahara T, Irokawa M, Karasawa H, Matsuda S. Detection of exaggerated blood pressure response using laboratory of physical science protocol and risk of future hypertension. J Occup Health. 2010;52(5):278–86.CrossRefPubMed Odahara T, Irokawa M, Karasawa H, Matsuda S. Detection of exaggerated blood pressure response using laboratory of physical science protocol and risk of future hypertension. J Occup Health. 2010;52(5):278–86.CrossRefPubMed
16.
go back to reference Holmqvist L, Mortensen L, Kanckos C, Ljungman C, Mehlig K, Manhem K. Exercise blood pressure and the risk of future hypertension. J Hum Hypertens. 2012;26(12):691–5.CrossRefPubMed Holmqvist L, Mortensen L, Kanckos C, Ljungman C, Mehlig K, Manhem K. Exercise blood pressure and the risk of future hypertension. J Hum Hypertens. 2012;26(12):691–5.CrossRefPubMed
17.
go back to reference Jae SY, Franklin BA, Choo J, Choi YH, Fernhall B. Exaggerated exercise blood pressure response during treadmill testing as a predictor of future hypertension in men: a longitudinal study. Am J Hypertens. 2015;28(11):1362–7.CrossRefPubMed Jae SY, Franklin BA, Choo J, Choi YH, Fernhall B. Exaggerated exercise blood pressure response during treadmill testing as a predictor of future hypertension in men: a longitudinal study. Am J Hypertens. 2015;28(11):1362–7.CrossRefPubMed
18.
go back to reference Keller K, Stelzer K, Ostad MA, Post F. Impact of exaggerated blood pressure response in normotensive individuals on future hypertension and prognosis: systematic review according to PRISMA guideline. Adv Med Sci. 2017;62(2):317–29.CrossRefPubMed Keller K, Stelzer K, Ostad MA, Post F. Impact of exaggerated blood pressure response in normotensive individuals on future hypertension and prognosis: systematic review according to PRISMA guideline. Adv Med Sci. 2017;62(2):317–29.CrossRefPubMed
19.
go back to reference Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.CrossRefPubMed Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.CrossRefPubMed
20.
go back to reference Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95(2):549–601.CrossRefPubMedPubMedCentral Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95(2):549–601.CrossRefPubMedPubMedCentral
21.
go back to reference Pollock ML, Foster C, Schmidt D, Hellman C, Linnerud AC, Ward A. Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women. Am Heart J. 1982;103(3):363–73.CrossRefPubMed Pollock ML, Foster C, Schmidt D, Hellman C, Linnerud AC, Ward A. Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women. Am Heart J. 1982;103(3):363–73.CrossRefPubMed
23.
go back to reference Ekblom B, Astrand PO, Saltin B, Stenberg J, Wallstrom B. Effect of training on circulatory response to exercise. J Appl Physiol. 1968;24(4):518–28.CrossRefPubMed Ekblom B, Astrand PO, Saltin B, Stenberg J, Wallstrom B. Effect of training on circulatory response to exercise. J Appl Physiol. 1968;24(4):518–28.CrossRefPubMed
24.
go back to reference Ogawa T, Spina RJ, Martin WH 3rd, Kohrt WM, Schechtman KB, Holloszy JO, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86(2):494–503.CrossRefPubMed Ogawa T, Spina RJ, Martin WH 3rd, Kohrt WM, Schechtman KB, Holloszy JO, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86(2):494–503.CrossRefPubMed
25.
go back to reference Pickering TG, Harshfield GA, Kleinert HD, Blank S, Laragh JH. Blood pressure during normal daily activities, sleep, and exercise. Comparison of values in normal and hypertensive subjects. JAMA. 1982;247(7):992–6.CrossRefPubMed Pickering TG, Harshfield GA, Kleinert HD, Blank S, Laragh JH. Blood pressure during normal daily activities, sleep, and exercise. Comparison of values in normal and hypertensive subjects. JAMA. 1982;247(7):992–6.CrossRefPubMed
26.
go back to reference Levy AM, Tabakin BS, Hanson JS. Hemodynamic responses to graded treadmill exercise in young untreated labile hypertensive patients. Circulation. 1967;35(6):1063–72.CrossRefPubMed Levy AM, Tabakin BS, Hanson JS. Hemodynamic responses to graded treadmill exercise in young untreated labile hypertensive patients. Circulation. 1967;35(6):1063–72.CrossRefPubMed
27.
go back to reference Floras JS, Hassan MO, Jones JV, Osikowska BA, Sever PS, Sleight P. Consequences of impaired arterial baroreflexes in essential hypertension: effects on pressor responses, plasma noradrenaline and blood pressure variability. J Hypertens. 1988;6(7):525–35.CrossRefPubMed Floras JS, Hassan MO, Jones JV, Osikowska BA, Sever PS, Sleight P. Consequences of impaired arterial baroreflexes in essential hypertension: effects on pressor responses, plasma noradrenaline and blood pressure variability. J Hypertens. 1988;6(7):525–35.CrossRefPubMed
28.
go back to reference Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol. 2009;169(2):157–64.CrossRefPubMed Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol. 2009;169(2):157–64.CrossRefPubMed
29.
go back to reference Dela F, Mohr T, Jensen CM, Haahr HL, Secher NH, Biering-Sorensen F, et al. Cardiovascular control during exercise: insights from spinal cord-injured humans. Circulation. 2003;107(16):2127–33.CrossRefPubMed Dela F, Mohr T, Jensen CM, Haahr HL, Secher NH, Biering-Sorensen F, et al. Cardiovascular control during exercise: insights from spinal cord-injured humans. Circulation. 2003;107(16):2127–33.CrossRefPubMed
30.
go back to reference Claydon VE, Hol AT, Eng JJ, Krassioukov AV. Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil. 2006;87(8):1106–14.CrossRefPubMed Claydon VE, Hol AT, Eng JJ, Krassioukov AV. Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil. 2006;87(8):1106–14.CrossRefPubMed
31.
go back to reference Kahn JK, Zola B, Juni JE, Vinik AI. Decreased exercise heart rate and blood pressure response in diabetic subjects with cardiac autonomic neuropathy. Diabetes Care. 1986;9(4):389–94.CrossRefPubMed Kahn JK, Zola B, Juni JE, Vinik AI. Decreased exercise heart rate and blood pressure response in diabetic subjects with cardiac autonomic neuropathy. Diabetes Care. 1986;9(4):389–94.CrossRefPubMed
32.
go back to reference Akhras F, Upward J, Jackson G. Increased diastolic blood pressure response to exercise testing when coronary artery disease is suspected. An indication of severity. Br Heart J. 1985;53(6):598–602.CrossRefPubMedPubMedCentral Akhras F, Upward J, Jackson G. Increased diastolic blood pressure response to exercise testing when coronary artery disease is suspected. An indication of severity. Br Heart J. 1985;53(6):598–602.CrossRefPubMedPubMedCentral
33.
go back to reference Brett SE, Ritter JM, Chowienczyk PJ. Diastolic blood pressure changes during exercise positively correlate with serum cholesterol and insulin resistance. Circulation. 2000;101(6):611–5.CrossRefPubMed Brett SE, Ritter JM, Chowienczyk PJ. Diastolic blood pressure changes during exercise positively correlate with serum cholesterol and insulin resistance. Circulation. 2000;101(6):611–5.CrossRefPubMed
34.
go back to reference Morris SN, Phillips JF, Jordan JW, McHenry PL. Incidence and significance of decreases in systolic blood pressure during graded treadmill exercise testing. Am J Cardiol. 1978;41(2):221–6.CrossRefPubMed Morris SN, Phillips JF, Jordan JW, McHenry PL. Incidence and significance of decreases in systolic blood pressure during graded treadmill exercise testing. Am J Cardiol. 1978;41(2):221–6.CrossRefPubMed
35.
go back to reference Hammermeister KE, DeRouen TA, Dodge HT, Zia M. Prognostic and predictive value of exertional hypotension in suspected coronary heart disease. Am J Cardiol. 1983;51(8):1261–6.CrossRefPubMed Hammermeister KE, DeRouen TA, Dodge HT, Zia M. Prognostic and predictive value of exertional hypotension in suspected coronary heart disease. Am J Cardiol. 1983;51(8):1261–6.CrossRefPubMed
36.
go back to reference Dubach P, Froelicher VF, Klein J, Oakes D, Grover-McKay M, Friis R. Exercise-induced hypotension in a male population. Criteria, causes, and prognosis. Circulation. 1988;78(6):1380–7.CrossRefPubMed Dubach P, Froelicher VF, Klein J, Oakes D, Grover-McKay M, Friis R. Exercise-induced hypotension in a male population. Criteria, causes, and prognosis. Circulation. 1988;78(6):1380–7.CrossRefPubMed
37.
go back to reference Peel C, Mossberg KA. Effects of cardiovascular medications on exercise responses. Phys Ther. 1995;75(5):387–96.CrossRefPubMed Peel C, Mossberg KA. Effects of cardiovascular medications on exercise responses. Phys Ther. 1995;75(5):387–96.CrossRefPubMed
38.
go back to reference Floras JS, Hassan MO, Jones JV, Sleight P. Cardioselective and nonselective beta-adrenoceptor blocking drugs in hypertension: a comparison of their effect on blood pressure during mental and physical activity. J Am Coll Cardiol. 1985;6(1):186–95.CrossRefPubMed Floras JS, Hassan MO, Jones JV, Sleight P. Cardioselective and nonselective beta-adrenoceptor blocking drugs in hypertension: a comparison of their effect on blood pressure during mental and physical activity. J Am Coll Cardiol. 1985;6(1):186–95.CrossRefPubMed
39.
go back to reference Pollock ML, Bohannon RL, Cooper KH, Ayres JJ, Ward A, White SR, et al. A comparative analysis of four protocols for maximal treadmill stress testing. Am Heart J. 1976;92(1):39–46.CrossRefPubMed Pollock ML, Bohannon RL, Cooper KH, Ayres JJ, Ward A, White SR, et al. A comparative analysis of four protocols for maximal treadmill stress testing. Am Heart J. 1976;92(1):39–46.CrossRefPubMed
40.
go back to reference Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton-Wessler M, et al. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol. 1991;17(6):1334–42.CrossRefPubMed Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton-Wessler M, et al. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol. 1991;17(6):1334–42.CrossRefPubMed
41.
go back to reference Niederberger M, Bruce RA, Kusumi F, Whitkanack S. Disparities in ventilatory and circulatory responses to bicycle and treadmill exercise. Br Heart J. 1974;36(4):377–82.CrossRefPubMedPubMedCentral Niederberger M, Bruce RA, Kusumi F, Whitkanack S. Disparities in ventilatory and circulatory responses to bicycle and treadmill exercise. Br Heart J. 1974;36(4):377–82.CrossRefPubMedPubMedCentral
42.
go back to reference Fernhall B, Kohrt W. The effect of training specificity on maximal and submaximal physiological responses to treadmill and cycle ergometry. J Sports Med Phys Fitness. 1990;30(3):268–75.PubMed Fernhall B, Kohrt W. The effect of training specificity on maximal and submaximal physiological responses to treadmill and cycle ergometry. J Sports Med Phys Fitness. 1990;30(3):268–75.PubMed
43.
go back to reference Daida H, Allison TG, Squires RW, Miller TD, Gau GT. Peak exercise blood pressure stratified by age and gender in apparently healthy subjects. Mayo Clin Proc. 1996;71(5):445–52.CrossRefPubMed Daida H, Allison TG, Squires RW, Miller TD, Gau GT. Peak exercise blood pressure stratified by age and gender in apparently healthy subjects. Mayo Clin Proc. 1996;71(5):445–52.CrossRefPubMed
44.
go back to reference Tanaka H, Bassett DR Jr, Turner MJ. Exaggerated blood pressure response to maximal exercise in endurance-trained individuals. Am J Hypertens. 1996;9(11):1099–103.CrossRefPubMed Tanaka H, Bassett DR Jr, Turner MJ. Exaggerated blood pressure response to maximal exercise in endurance-trained individuals. Am J Hypertens. 1996;9(11):1099–103.CrossRefPubMed
45.
go back to reference American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Baltimore: Lippincott Williams & Wilkins; 2013. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Baltimore: Lippincott Williams & Wilkins; 2013.
46.
go back to reference American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 3rd ed. Philadelphia: Lea & Febiger; 1986. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 3rd ed. Philadelphia: Lea & Febiger; 1986.
47.
go back to reference MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol (1985). 1985;58(3):785–90.CrossRefPubMed MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol (1985). 1985;58(3):785–90.CrossRefPubMed
48.
go back to reference Pepine CJ, Nichols WW. Effects of transient increase in intrathoracic pressure on hemodynamic determinants of myocardial oxygen supply and demand. Clin Cardiol. 1988;11(12):831–7.CrossRefPubMed Pepine CJ, Nichols WW. Effects of transient increase in intrathoracic pressure on hemodynamic determinants of myocardial oxygen supply and demand. Clin Cardiol. 1988;11(12):831–7.CrossRefPubMed
49.
go back to reference Thomas SG, Goodman JM, Burr JF. Evidence-based risk assessment and recommendations for physical activity clearance: established cardiovascular disease. Appl Physiol Nutr Metab. 2011;36(Suppl 1):S190–213.CrossRefPubMed Thomas SG, Goodman JM, Burr JF. Evidence-based risk assessment and recommendations for physical activity clearance: established cardiovascular disease. Appl Physiol Nutr Metab. 2011;36(Suppl 1):S190–213.CrossRefPubMed
50.
go back to reference MacDonald JR. Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens. 2002;16(4):225–36.CrossRefPubMed MacDonald JR. Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens. 2002;16(4):225–36.CrossRefPubMed
51.
go back to reference Floras JS, Sinkey CA, Aylward PE, Seals DR, Thoren PN, Mark AL. Postexercise hypotension and sympathoinhibition in borderline hypertensive men. Hypertension. 1989;14(1):28–35.CrossRefPubMed Floras JS, Sinkey CA, Aylward PE, Seals DR, Thoren PN, Mark AL. Postexercise hypotension and sympathoinhibition in borderline hypertensive men. Hypertension. 1989;14(1):28–35.CrossRefPubMed
52.
go back to reference Le VV, Mitiku T, Sungar G, Myers J, Froelicher V. The blood pressure response to dynamic exercise testing: a systematic review. Prog Cardiovasc Dis. 2008;51(2):135–60.CrossRefPubMed Le VV, Mitiku T, Sungar G, Myers J, Froelicher V. The blood pressure response to dynamic exercise testing: a systematic review. Prog Cardiovasc Dis. 2008;51(2):135–60.CrossRefPubMed
53.
go back to reference Dlin RA, Hanne N, Silverberg DS, Bar-Or O. Follow-up of normotensive men with exaggerated blood pressure response to exercise. Am Heart J. 1983;106(2):316–20.CrossRefPubMed Dlin RA, Hanne N, Silverberg DS, Bar-Or O. Follow-up of normotensive men with exaggerated blood pressure response to exercise. Am Heart J. 1983;106(2):316–20.CrossRefPubMed
54.
go back to reference Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694–740.CrossRefPubMed Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694–740.CrossRefPubMed
55.
go back to reference American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 4th ed. Philadelphia: Lea & Febiger; 1991. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 4th ed. Philadelphia: Lea & Febiger; 1991.
56.
go back to reference Farah R, Shurtz-Swirski R, Nicola M. High blood pressure response to stress ergometry could predict future hypertension. Eur J Intern Med. 2009;20(4):366–8.CrossRefPubMed Farah R, Shurtz-Swirski R, Nicola M. High blood pressure response to stress ergometry could predict future hypertension. Eur J Intern Med. 2009;20(4):366–8.CrossRefPubMed
57.
go back to reference Tanji JL, Champlin JJ, Wong GY, Lew EY, Brown TC, Amsterdam EA. Blood pressure recovery curves after submaximal exercise. A predictor of hypertension at ten-year follow-up. Am J Hypertens. 1989;2(3 Pt 1):135–8.CrossRefPubMed Tanji JL, Champlin JJ, Wong GY, Lew EY, Brown TC, Amsterdam EA. Blood pressure recovery curves after submaximal exercise. A predictor of hypertension at ten-year follow-up. Am J Hypertens. 1989;2(3 Pt 1):135–8.CrossRefPubMed
58.
go back to reference Dahms RW, Giese MD, Nagle F, Corliss RJ. The diagnostic and prognostic value of combined rest-exercise blood pressure patterns. Med Sci Sports Exerc. 1978;10:36. Dahms RW, Giese MD, Nagle F, Corliss RJ. The diagnostic and prognostic value of combined rest-exercise blood pressure patterns. Med Sci Sports Exerc. 1978;10:36.
59.
go back to reference Jackson AS, Squires W, Grimes G, Bread EF. Prediction of future resting hypertension from exercise blood pressure. J Cardiac Rehab. 1983;3:263–8. Jackson AS, Squires W, Grimes G, Bread EF. Prediction of future resting hypertension from exercise blood pressure. J Cardiac Rehab. 1983;3:263–8.
60.
go back to reference Zanettini JO, Pisani Zanettini J, Zanettini MT, Fuchs FD. Correction of the hypertensive response in the treadmill testing by the work performance improves the prediction of hypertension by ambulatory blood pressure monitoring and incidence of cardiac abnormalities by echocardiography: results of an eight year follow-up study. Int J Cardiol. 2010;141(3):243–9.CrossRefPubMed Zanettini JO, Pisani Zanettini J, Zanettini MT, Fuchs FD. Correction of the hypertensive response in the treadmill testing by the work performance improves the prediction of hypertension by ambulatory blood pressure monitoring and incidence of cardiac abnormalities by echocardiography: results of an eight year follow-up study. Int J Cardiol. 2010;141(3):243–9.CrossRefPubMed
61.
go back to reference Lima SG, Albuquerque MF, Oliveira JR, Ayres CF, Cunha JE, Oliveira DF, et al. Exaggerated blood pressure response during the exercise treadmill test as a risk factor for hypertension. Braz J Med Biol Res. 2013;46(4):368–74.CrossRefPubMedPubMedCentral Lima SG, Albuquerque MF, Oliveira JR, Ayres CF, Cunha JE, Oliveira DF, et al. Exaggerated blood pressure response during the exercise treadmill test as a risk factor for hypertension. Braz J Med Biol Res. 2013;46(4):368–74.CrossRefPubMedPubMedCentral
62.
go back to reference Benbassat J, Froom P. Blood pressure response to exercise as a predictor of hypertension. Arch Intern Med. 1986;146(10):2053–5.CrossRefPubMed Benbassat J, Froom P. Blood pressure response to exercise as a predictor of hypertension. Arch Intern Med. 1986;146(10):2053–5.CrossRefPubMed
63.
go back to reference Geddes LA, Voelz M, Combs C, Reiner D, Babbs CF. Characterization of the oscillometric method for measuring indirect blood pressure. Ann Biomed Eng. 1982;10(6):271–80.CrossRefPubMed Geddes LA, Voelz M, Combs C, Reiner D, Babbs CF. Characterization of the oscillometric method for measuring indirect blood pressure. Ann Biomed Eng. 1982;10(6):271–80.CrossRefPubMed
64.
go back to reference Griffin SE, Robergs RA, Heyward VH. Blood pressure measurement during exercise: a review. Med Sci Sports Exerc. 1997;29(1):149–59.CrossRefPubMed Griffin SE, Robergs RA, Heyward VH. Blood pressure measurement during exercise: a review. Med Sci Sports Exerc. 1997;29(1):149–59.CrossRefPubMed
65.
go back to reference Cameron JD, Stevenson I, Reed E, McGrath BP, Dart AM, Kingwell BA. Accuracy of automated auscultatory blood pressure measurement during supine exercise and treadmill stress electrocardiogram-testing. Blood Press Monit. 2004;9(5):269–75.CrossRefPubMed Cameron JD, Stevenson I, Reed E, McGrath BP, Dart AM, Kingwell BA. Accuracy of automated auscultatory blood pressure measurement during supine exercise and treadmill stress electrocardiogram-testing. Blood Press Monit. 2004;9(5):269–75.CrossRefPubMed
66.
go back to reference Schwartz JE, Burg MM, Shimbo D, Broderick JE, Stone AA, Ishikawa J, et al. Clinic blood pressure underestimates ambulatory blood pressure in an untreated employer-based US population: results from the masked hypertension study. Circulation. 2016;134(23):1794–807.CrossRefPubMedPubMedCentral Schwartz JE, Burg MM, Shimbo D, Broderick JE, Stone AA, Ishikawa J, et al. Clinic blood pressure underestimates ambulatory blood pressure in an untreated employer-based US population: results from the masked hypertension study. Circulation. 2016;134(23):1794–807.CrossRefPubMedPubMedCentral
Metadata
Title
Exercise Blood Pressure Guidelines: Time to Re-evaluate What is Normal and Exaggerated?
Authors
Katharine D. Currie
John S. Floras
Andre La Gerche
Jack M. Goodman
Publication date
01-08-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 8/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-018-0900-x

Other articles of this Issue 8/2018

Sports Medicine 8/2018 Go to the issue