Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2022

Open Access 01-12-2022 | Exenatide | Research

Effect of race on cardiometabolic responses to once-weekly exenatide: insights from the Exenatide Study of Cardiovascular Event Lowering (EXSCEL)

Authors: Timothy M. E. Davis, Anna Giczewska, Yuliya Lokhnygina, Robert J. Mentz, Naveed Sattar, Rury R. Holman, for the EXSCEL Study Group

Published in: Cardiovascular Diabetology | Issue 1/2022

Login to get access

Abstract

Background

To determine whether there were racial differences in short-term cardiometabolic responses to once-weekly exenatide (EQW) in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL).

Methods

EXSCEL enrolled 14,752 patients with type 2 diabetes (hemoglobin A1c (HbA1c) 6.5–10.0% [48–86 mmol/mol]) with or without cardiovascular disease who were randomized double-blind to EQW or placebo. Background glucose-lowering/other cardiovascular therapies were unaltered for 6 months post-randomization unless clinically essential, facilitating comparison of EQW-associated effects in 14,665 evaluable participants self-identifying as White (n = 11,113), Asian (n = 1444), Black (n = 870), or Other Race (n = 1,238. Placebo-adjusted 6 month absolute changes in cardiometabolic variables were assessed using generalized linear models.

Results

Mean 6-month placebo-adjusted HbA1c reductions were similar in the four groups (range 0.54–0.67% [5.9 to 7.3 mmol/mol], P = 0.11 for race×treatment interaction), with no significant difference in Asians (reference) versus other groups after covariate adjustment (all P ≥ 0.10). Six-month placebo-adjusted mean changes in systolic (−1.8 to 0.0 mmHg) and diastolic (0.2 to 1.2 mmHg) blood pressure, serum LDL (− 0.06 to 0.02 mmol/L) and HDL (0.00 to 0.01 mmol/L) cholesterol, and serum triglycerides (−0.1 to 0.0 mmol/L) were similar in the racial groups (P ≥ 0.19 for race×treatment interaction and all P ≥ 0.13 for comparisons of Asians with other races). Resting pulse rate increased more in Asians (4 beats/min) than in other groups (≤ 3 beats/min, P = 0.016 for race×treatment interaction and all P ≤ 0.050 for comparisons of Asians with other races).

Conclusions

Short-term cardiometabolic responses to EQW were similar in the main racial groups in EXSCEL, apart from a greater pulse rate increase in Asians.
Trial registrationhttps://​clinicaltrials.​gov NCT01144338.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–701.CrossRef Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–701.CrossRef
2.
go back to reference Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–93.CrossRef Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–93.CrossRef
3.
go back to reference Kang YM, Cho YK, Lee J, et al. Asian subpopulations may exhibit greater cardiovascular benefit from long-acting glucagon-like peptide 1 receptor agonists: A meta-analysis of cardiovascular outcome trials. Diabetes Metab J. 2019;43(4):410–21.CrossRef Kang YM, Cho YK, Lee J, et al. Asian subpopulations may exhibit greater cardiovascular benefit from long-acting glucagon-like peptide 1 receptor agonists: A meta-analysis of cardiovascular outcome trials. Diabetes Metab J. 2019;43(4):410–21.CrossRef
4.
go back to reference Ghouri N, Javed H, Sattar N. Pharmacological management of diabetes for reducing glucose levels and cardiovascular disease risk: what evidence in South Asians? Curr Diabetes Rev. 2021;17(9):e122820189511.CrossRef Ghouri N, Javed H, Sattar N. Pharmacological management of diabetes for reducing glucose levels and cardiovascular disease risk: what evidence in South Asians? Curr Diabetes Rev. 2021;17(9):e122820189511.CrossRef
5.
go back to reference Lee MMY, Ghouri N, McGuire DK, Rutter MK, Sattar N. Meta-analyses of results from randomized outcome trials comparing cardiovascular effects of SGLT2is and GLP-1RAs in Asian versus White patients with and without type 2 diabetes. Diabetes Care. 2021;44(5):1236–41.CrossRef Lee MMY, Ghouri N, McGuire DK, Rutter MK, Sattar N. Meta-analyses of results from randomized outcome trials comparing cardiovascular effects of SGLT2is and GLP-1RAs in Asian versus White patients with and without type 2 diabetes. Diabetes Care. 2021;44(5):1236–41.CrossRef
6.
go back to reference Kim YG, Hahn S, Oh TJ, Park KS, Cho YM. Differences in the HbA1c-lowering efficacy of glucagon-like peptide-1 analogues between Asians and non-Asians: a systematic review and meta-analysis. Diabetes Obes Metab. 2014;16(10):900–9.CrossRef Kim YG, Hahn S, Oh TJ, Park KS, Cho YM. Differences in the HbA1c-lowering efficacy of glucagon-like peptide-1 analogues between Asians and non-Asians: a systematic review and meta-analysis. Diabetes Obes Metab. 2014;16(10):900–9.CrossRef
7.
go back to reference Pencek R, Blickensderfer A, Li Y, Brunell SC, Anderson PW. Exenatide twice daily: analysis of effectiveness and safety data stratified by age, sex, race, duration of diabetes, and body mass index. Postgrad Med. 2012;124(4):21–32.CrossRef Pencek R, Blickensderfer A, Li Y, Brunell SC, Anderson PW. Exenatide twice daily: analysis of effectiveness and safety data stratified by age, sex, race, duration of diabetes, and body mass index. Postgrad Med. 2012;124(4):21–32.CrossRef
8.
go back to reference Shaw JE, Gallwitz B, Han J, Hardy E, Schernthaner G. Variability in and predictors of glycaemic responses after 24 weeks of treatment with exenatide twice daily and exenatide once weekly. Diabetes Obes Metab. 2017;19(12):1793–7.CrossRef Shaw JE, Gallwitz B, Han J, Hardy E, Schernthaner G. Variability in and predictors of glycaemic responses after 24 weeks of treatment with exenatide twice daily and exenatide once weekly. Diabetes Obes Metab. 2017;19(12):1793–7.CrossRef
9.
go back to reference Sheu WH, Brunell SC, Blase E. Efficacy and tolerability of exenatide twice daily and exenatide once weekly in Asian versus White patients with type 2 diabetes mellitus: A pooled analysis. Diabetes Res Clin Pract. 2016;114:160–72.CrossRef Sheu WH, Brunell SC, Blase E. Efficacy and tolerability of exenatide twice daily and exenatide once weekly in Asian versus White patients with type 2 diabetes mellitus: A pooled analysis. Diabetes Res Clin Pract. 2016;114:160–72.CrossRef
10.
go back to reference Pencek R, Blickensderfer A, Li Y, Brunell SC, Chen S. Exenatide once weekly for the treatment of type 2 diabetes: effectiveness and tolerability in patient subpopulations. Int J Clin Pract. 2012;66(11):1021–32.CrossRef Pencek R, Blickensderfer A, Li Y, Brunell SC, Chen S. Exenatide once weekly for the treatment of type 2 diabetes: effectiveness and tolerability in patient subpopulations. Int J Clin Pract. 2012;66(11):1021–32.CrossRef
11.
go back to reference Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.CrossRef Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.CrossRef
12.
go back to reference Holman RR, Bethel MA, George J, et al. Rationale and design of the EXenatide Study of Cardiovascular Event Lowering (EXSCEL) trial. Am Heart J. 2016;174:103–10.CrossRef Holman RR, Bethel MA, George J, et al. Rationale and design of the EXenatide Study of Cardiovascular Event Lowering (EXSCEL) trial. Am Heart J. 2016;174:103–10.CrossRef
13.
go back to reference Mentz RJ, Bethel MA, Gustavson S, et al. Baseline characteristics of patients enrolled in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL). Am Heart J. 2017;187:1–9.CrossRef Mentz RJ, Bethel MA, Gustavson S, et al. Baseline characteristics of patients enrolled in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL). Am Heart J. 2017;187:1–9.CrossRef
14.
go back to reference Seravalle G, Grassi G. Heart rate as cardiovascular risk factor. Postgrad Med. 2020;132(4):358–67.CrossRef Seravalle G, Grassi G. Heart rate as cardiovascular risk factor. Postgrad Med. 2020;132(4):358–67.CrossRef
15.
go back to reference Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016;24(1):15–30.CrossRef Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016;24(1):15–30.CrossRef
16.
go back to reference Minambres I, Perez A. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial? Diabetol Metab Syndr. 2017;9:6.CrossRef Minambres I, Perez A. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial? Diabetol Metab Syndr. 2017;9:6.CrossRef
17.
go back to reference Drucker DJ, Buse JB, Taylor K, et al; DURATION-1 Study Group. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008;372(9645):1240–50.CrossRef Drucker DJ, Buse JB, Taylor K, et al; DURATION-1 Study Group. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008;372(9645):1240–50.CrossRef
18.
go back to reference Gan S, Dawed AY, Donnelly LA, et al. Efficacy of modern diabetes treatments DPP-4i, SGLT-2i, and GLP-1RA in White and Asian patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2020;43(8):1948–57.CrossRef Gan S, Dawed AY, Donnelly LA, et al. Efficacy of modern diabetes treatments DPP-4i, SGLT-2i, and GLP-1RA in White and Asian patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2020;43(8):1948–57.CrossRef
19.
go back to reference Nauck MA, Meier JJ. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181(6):R211-34.CrossRef Nauck MA, Meier JJ. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181(6):R211-34.CrossRef
20.
go back to reference Burden ML, Samanta A, Spalding D, Burden AC. A comparison of the glycaemic and insulinaemic effects of an Asian and a European meal. Pract Diab Int. 1994;11:208–11.CrossRef Burden ML, Samanta A, Spalding D, Burden AC. A comparison of the glycaemic and insulinaemic effects of an Asian and a European meal. Pract Diab Int. 1994;11:208–11.CrossRef
21.
go back to reference Henry CJ, Lightowler HJ, Newens K, et al. Glycaemic index of common foods tested in the UK and India. Br J Nutr 2008;99(4):840–5.CrossRef Henry CJ, Lightowler HJ, Newens K, et al. Glycaemic index of common foods tested in the UK and India. Br J Nutr 2008;99(4):840–5.CrossRef
22.
go back to reference Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ. 2012;344:e1454.CrossRef Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ. 2012;344:e1454.CrossRef
23.
go back to reference Davis TME, Mulder H, Lokhnygina Y, TECOS Study Group, et al. Effect of race on the glycaemic response to sitagliptin: insights from the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Diabetes Obes Metab. 2018;20(6):1427–34.CrossRef Davis TME, Mulder H, Lokhnygina Y, TECOS Study Group, et al. Effect of race on the glycaemic response to sitagliptin: insights from the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Diabetes Obes Metab. 2018;20(6):1427–34.CrossRef
24.
go back to reference Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016;18(2):16.CrossRef Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016;18(2):16.CrossRef
25.
go back to reference Bathula R, Francis DP, Hughes A, Chaturvedi N. Ethnic differences in heart rate: can these be explained by conventional cardiovascular risk factors? Clin Auton Res. 2008;18(2):90–5.CrossRef Bathula R, Francis DP, Hughes A, Chaturvedi N. Ethnic differences in heart rate: can these be explained by conventional cardiovascular risk factors? Clin Auton Res. 2008;18(2):90–5.CrossRef
26.
go back to reference Eckberg DL. Physiological basis for human autonomic rhythms. Ann Med. 2000;32(5):341–9.CrossRef Eckberg DL. Physiological basis for human autonomic rhythms. Ann Med. 2000;32(5):341–9.CrossRef
27.
go back to reference Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178–93.CrossRef Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178–93.CrossRef
28.
go back to reference Griffioen KJ, Wan R, Okun E, et al. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovasc Res. 2011;89(1):72–8.CrossRef Griffioen KJ, Wan R, Okun E, et al. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovasc Res. 2011;89(1):72–8.CrossRef
29.
go back to reference Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002;110(1):43–52.CrossRef Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002;110(1):43–52.CrossRef
30.
go back to reference Paiman EHM, van Eyk HJ, van Aalst MMA, et al. Effect of liraglutide on cardiovascular function and myocardial tissue characteristics in type 2 diabetes patients of South Asian descent living in the Netherlands: a double-blind, randomized, placebo-controlled trial. J Magn Reson Imaging. 2020;51(6):1679–88.CrossRef Paiman EHM, van Eyk HJ, van Aalst MMA, et al. Effect of liraglutide on cardiovascular function and myocardial tissue characteristics in type 2 diabetes patients of South Asian descent living in the Netherlands: a double-blind, randomized, placebo-controlled trial. J Magn Reson Imaging. 2020;51(6):1679–88.CrossRef
32.
go back to reference Tudur Smith C, Marcucci M, Nolan SJ, et al. Individual participant data meta-analyses compared with meta-analyses based on aggregate data. Cochrane Database Syst Rev. 2016;9:MR000007.PubMed Tudur Smith C, Marcucci M, Nolan SJ, et al. Individual participant data meta-analyses compared with meta-analyses based on aggregate data. Cochrane Database Syst Rev. 2016;9:MR000007.PubMed
33.
go back to reference Yang BY, Dong GH. Tobacco smoking in Asia—a public health threat. JAMA Netw Open. 2019;2(3):e191471.CrossRef Yang BY, Dong GH. Tobacco smoking in Asia—a public health threat. JAMA Netw Open. 2019;2(3):e191471.CrossRef
34.
go back to reference Pan A, Wang Y, Talaei M, Hu FB. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus: A meta-analysis and systematic review. Circulation. 2015;132(19):1795–804.CrossRef Pan A, Wang Y, Talaei M, Hu FB. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus: A meta-analysis and systematic review. Circulation. 2015;132(19):1795–804.CrossRef
35.
go back to reference Duncan A, Heyer MP, Ishikawa M, et al. Habenular TCF7L2 links nicotine addiction to diabetes. Nature 2019;574(7778):372–7.CrossRef Duncan A, Heyer MP, Ishikawa M, et al. Habenular TCF7L2 links nicotine addiction to diabetes. Nature 2019;574(7778):372–7.CrossRef
36.
go back to reference Chua A, Adams D, Dey D, et al. Coronary artery disease in East and South Asians: differences observed on cardiac CT. Heart 2022;108(4):251–7.CrossRef Chua A, Adams D, Dey D, et al. Coronary artery disease in East and South Asians: differences observed on cardiac CT. Heart 2022;108(4):251–7.CrossRef
Metadata
Title
Effect of race on cardiometabolic responses to once-weekly exenatide: insights from the Exenatide Study of Cardiovascular Event Lowering (EXSCEL)
Authors
Timothy M. E. Davis
Anna Giczewska
Yuliya Lokhnygina
Robert J. Mentz
Naveed Sattar
Rury R. Holman
for the EXSCEL Study Group
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2022
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-022-01555-z

Other articles of this Issue 1/2022

Cardiovascular Diabetology 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine