Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2018

Open Access 01-12-2018 | Research

Excessive nerve growth factor impairs bidirectional communication between the oocyte and cumulus cells resulting in reduced oocyte competence

Authors: Yiwen Zhai, Guidong Yao, Faiza Rao, Yong Wang, Xiaoyuan Song, Fei Sun

Published in: Reproductive Biology and Endocrinology | Issue 1/2018

Login to get access

Abstract

Background

Excessive nerve growth factor (NGF) is commonly found in the follicular fluid of patients with polycystic ovary syndrome (PCOS). Furthermore, oocytes from PCOS patients exhibit lower developmental competence. The purpose of this study was to explore the association between excessive NGF and low oocyte competence in vitro.

Methods

Excessive NGF was added to mouse cumulus oocyte complexes (COCs) cultured in vitro to investigate meiotic maturation of the oocyte. After culture, mRNA expression levels of Pfkp and Ldha genes in cumulus cells (CCs) and Gdf9, Bmp15 and Fgf8 genes in oocytes, were determined by real-time quantitative polymerase chain reaction (qPCR). We also investigated the mRNA content of Pfkp and Ldha in CCs from PCOS and non-PCOS patients.

Results

Excessive NGF significantly inhibited oocyte meiotic maturation. The inhibitory effect was mediated by the NGF high-affinity receptor, NTRK1. mRNA content of Pfkp and Ldha genes in CCs was significantly reduced by excessive NGF stimulation. Moreover, the expression levels of Gdf9, Bmp15 and Fgf8 were also decreased in oocytes, and was induced by excessive NGF-stimulated CCs. In addition, lower expression levels of Pfkp and Ldha in CCs were identified in Chinese PCOS patients with excessive NGF (PCOS, 22 ± 2.63 ng/ml, n = 13; non-PCOS, 7.18 ± 2.42 ng/ml, n = 9; p < 0.01) in the follicular fluid, suggesting a potential association between excessive NGF and decreased glycolysis in the CCs of women with PCOS.

Conclusions

Excessive NGF impairs bidirectional communication between oocyte and cumulus cells, which might be related to low oocyte competence.
Literature
1.
go back to reference Streiter S, Fisch B, Sabbah B, Ao A, Abir R. The importance of neuronal growth factors in the ovary. Mol Hum Reprod. 2016;22(1):3–17.PubMedCrossRef Streiter S, Fisch B, Sabbah B, Ao A, Abir R. The importance of neuronal growth factors in the ovary. Mol Hum Reprod. 2016;22(1):3–17.PubMedCrossRef
2.
go back to reference Dissen GA, Romero C, Hirshfield AN, Ojeda SR. Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology. 2001;142(5):2078–86.PubMedCrossRef Dissen GA, Romero C, Hirshfield AN, Ojeda SR. Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology. 2001;142(5):2078–86.PubMedCrossRef
3.
go back to reference Abir R, Fishc B, Jin S, Barnnet M, Ben-Haroush A, Felz C, Kessler-Icekson G, Feldberg D, Nitke S, Ao A. Presence of NGF and its receptors in ovaries from human fetuses and adults. Mol Hum Reprod. 2005;11(4):229–36.PubMedCrossRef Abir R, Fishc B, Jin S, Barnnet M, Ben-Haroush A, Felz C, Kessler-Icekson G, Feldberg D, Nitke S, Ao A. Presence of NGF and its receptors in ovaries from human fetuses and adults. Mol Hum Reprod. 2005;11(4):229–36.PubMedCrossRef
4.
go back to reference Dissen GA, Romero C, Paredes A, Ojeda SR. Neurotrophic control of ovarian development. Microsc Res Tech. 2002;59(6):509–15.PubMedCrossRef Dissen GA, Romero C, Paredes A, Ojeda SR. Neurotrophic control of ovarian development. Microsc Res Tech. 2002;59(6):509–15.PubMedCrossRef
5.
go back to reference Mayerhofer A, Dissen GA, Parrott JA, Hill DF, Mayerhofer D, Garfield RE, Costa ME, Skinner MK, Ojeda SR. Involvement of nerve growth factor in the ovulatory cascade: trkA receptor activation inhibits gap junctional communication between thecal cells. Endocrinology. 1996;137(12):5662–70.PubMedCrossRef Mayerhofer A, Dissen GA, Parrott JA, Hill DF, Mayerhofer D, Garfield RE, Costa ME, Skinner MK, Ojeda SR. Involvement of nerve growth factor in the ovulatory cascade: trkA receptor activation inhibits gap junctional communication between thecal cells. Endocrinology. 1996;137(12):5662–70.PubMedCrossRef
6.
go back to reference Chaves RN, Alves AMCV, Duarte ABG, Araujo VR, Celestino JJH, Matos MHT, Lopes CAP, Campello CC, Name KPO, Bao SN, et al. Nerve growth factor promotes the survival of goat preantral follicles cultured in vitro. Cells Tissues Organs. 2010;192(4):272–82.PubMedCrossRef Chaves RN, Alves AMCV, Duarte ABG, Araujo VR, Celestino JJH, Matos MHT, Lopes CAP, Campello CC, Name KPO, Bao SN, et al. Nerve growth factor promotes the survival of goat preantral follicles cultured in vitro. Cells Tissues Organs. 2010;192(4):272–82.PubMedCrossRef
7.
go back to reference Naicy T, Venkatachalapathy RT, Aravindakshan TV, Radhika G, Raghavan KC, Mini M, Shyama K. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats. Theriogenology. 2016;86(9):2172–2178.e3.PubMedCrossRef Naicy T, Venkatachalapathy RT, Aravindakshan TV, Radhika G, Raghavan KC, Mini M, Shyama K. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats. Theriogenology. 2016;86(9):2172–2178.e3.PubMedCrossRef
8.
go back to reference Naicy T, Venkatachalapathy RT, Aravindakshan TV, Raghavan KC, Mini M, Shyama K. Relative abundance of tissue mRNA and association of the single nucleotide polymorphism of the goat NGF gene with prolificacy. Anim Reprod Sci. 2016;173:42–8.PubMedCrossRef Naicy T, Venkatachalapathy RT, Aravindakshan TV, Raghavan KC, Mini M, Shyama K. Relative abundance of tissue mRNA and association of the single nucleotide polymorphism of the goat NGF gene with prolificacy. Anim Reprod Sci. 2016;173:42–8.PubMedCrossRef
9.
go back to reference Linher-Melville K, Li J. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation. Reproduction. 2013;145(2):R43–54.PubMedCrossRef Linher-Melville K, Li J. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation. Reproduction. 2013;145(2):R43–54.PubMedCrossRef
10.
go back to reference Barboni B, Mattioli M, Gioia L, Turriani M, Capacchietti G, Berardinelli P, Bernabo N. Preovulatory rise of NGF in ovine follicular fluid: possible involvement in the control of oocyte maturation. Microsc Res Tech. 2002;59(6):516–21.PubMedCrossRef Barboni B, Mattioli M, Gioia L, Turriani M, Capacchietti G, Berardinelli P, Bernabo N. Preovulatory rise of NGF in ovine follicular fluid: possible involvement in the control of oocyte maturation. Microsc Res Tech. 2002;59(6):516–21.PubMedCrossRef
11.
go back to reference Crispo M, dos Santos-Neto PC, Vilariño M, Mulet AP, De León A, Barbeito L, Menchaca A. Nerve growth factor influences cleavage rate and embryo development in sheep. J Anim Sci. 2016;94(10):4447–51.PubMedCrossRef Crispo M, dos Santos-Neto PC, Vilariño M, Mulet AP, De León A, Barbeito L, Menchaca A. Nerve growth factor influences cleavage rate and embryo development in sheep. J Anim Sci. 2016;94(10):4447–51.PubMedCrossRef
12.
go back to reference Papp AB, Somfai T, Tartaglione M, Varga E, JC G. The effect of nerve growth factor on nuclear progression of porcine oocytes during in vitro maturation and embryo development. Acta Vet Hung. 2005;53(1):91–101.PubMedCrossRef Papp AB, Somfai T, Tartaglione M, Varga E, JC G. The effect of nerve growth factor on nuclear progression of porcine oocytes during in vitro maturation and embryo development. Acta Vet Hung. 2005;53(1):91–101.PubMedCrossRef
13.
go back to reference Dissen GA, Garcia-Rudaz C, Paredes A, Mayer C, Mayerhofer A, Ojeda SR. Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans. Endocrinology. 2009;150(6):2906–14.PubMedPubMedCentralCrossRef Dissen GA, Garcia-Rudaz C, Paredes A, Mayer C, Mayerhofer A, Ojeda SR. Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans. Endocrinology. 2009;150(6):2906–14.PubMedPubMedCentralCrossRef
14.
go back to reference Wilson JL, Chen W, Dissen GA, Ojeda S, Cowley MA, Garcia-Rudaz C, Enriori PJ. Excess of nerve growth factor in the ovary causes a polycystic ovary-like syndrome in mice, which closely resembles both reproductive and metabolic aspects of the human syndrome. Endocrinology. 2014;155(11):4494–506.PubMedPubMedCentralCrossRef Wilson JL, Chen W, Dissen GA, Ojeda S, Cowley MA, Garcia-Rudaz C, Enriori PJ. Excess of nerve growth factor in the ovary causes a polycystic ovary-like syndrome in mice, which closely resembles both reproductive and metabolic aspects of the human syndrome. Endocrinology. 2014;155(11):4494–506.PubMedPubMedCentralCrossRef
15.
go back to reference Gulino FA, Giuffrida E, Leonardi E, Marilli I, Palumbo MA. Intrafollicular nerve growth factor (NGF) concentration in patients with polycystic ovarian syndrome case-control study. Minerva Ginecol. 2016;68(2):110–6.PubMed Gulino FA, Giuffrida E, Leonardi E, Marilli I, Palumbo MA. Intrafollicular nerve growth factor (NGF) concentration in patients with polycystic ovarian syndrome case-control study. Minerva Ginecol. 2016;68(2):110–6.PubMed
16.
go back to reference Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17(1):17–33.PubMedCrossRef Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17(1):17–33.PubMedCrossRef
17.
go back to reference Sadeu JC, Doedée A, Neal MS, Hughes EG, Foster WG. Neurotrophins (BDNF and NGF) in follicular fluid of women with different infertility diagnoses. Reprod BioMed Online. 2012;24(2):174–9.PubMedCrossRef Sadeu JC, Doedée A, Neal MS, Hughes EG, Foster WG. Neurotrophins (BDNF and NGF) in follicular fluid of women with different infertility diagnoses. Reprod BioMed Online. 2012;24(2):174–9.PubMedCrossRef
19.
go back to reference Wood JR, Dumesic DA, Abbott DH, Strauss JF 3rd. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92(2):705–13.PubMedCrossRef Wood JR, Dumesic DA, Abbott DH, Strauss JF 3rd. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92(2):705–13.PubMedCrossRef
20.
go back to reference Heijnen E, Eijkemans MJC, Hughes EG, Laven JSE, Macklon NS, Fauser B. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12(1):13–21.PubMedCrossRef Heijnen E, Eijkemans MJC, Hughes EG, Laven JSE, Macklon NS, Fauser B. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12(1):13–21.PubMedCrossRef
21.
go back to reference Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296(2):514–21.PubMedCrossRef Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296(2):514–21.PubMedCrossRef
22.
go back to reference Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.PubMedCrossRef Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.PubMedCrossRef
23.
go back to reference Su Y-Q, Wu X, O’Brien MJ, Pendola FL, Denegre JN, Matzuk MM, Eppig JJ. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 2004;276(1):64–73.PubMedCrossRef Su Y-Q, Wu X, O’Brien MJ, Pendola FL, Denegre JN, Matzuk MM, Eppig JJ. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 2004;276(1):64–73.PubMedCrossRef
24.
go back to reference Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.PubMedCrossRef Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.PubMedCrossRef
25.
26.
go back to reference Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool A Ecol Genet Physiol. 1985;234(2):231–6. Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool A Ecol Genet Physiol. 1985;234(2):231–6.
27.
go back to reference Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20–30.PubMedCrossRef Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20–30.PubMedCrossRef
28.
go back to reference Valve E, Penttilä TL, Paranko J, Härkönen P. FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem Biophys Res Commun. 1997;232(1):173–7.PubMedCrossRef Valve E, Penttilä TL, Paranko J, Härkönen P. FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem Biophys Res Commun. 1997;232(1):173–7.PubMedCrossRef
29.
go back to reference Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13:1035–48.PubMedCrossRef Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13:1035–48.PubMedCrossRef
30.
go back to reference Shimasaki S, Kelly Moore R, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72–101.PubMedCrossRef Shimasaki S, Kelly Moore R, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72–101.PubMedCrossRef
31.
go back to reference Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O’Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.PubMedCrossRef Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O’Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.PubMedCrossRef
32.
go back to reference Wei D, Xie J, Yin B, Hao H, Song X, Liu Q, Zhang C, Sun Y. Significantly lengthened telomere in granulosa cells from women with polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2017;34(7):861–8.PubMedCrossRef Wei D, Xie J, Yin B, Hao H, Song X, Liu Q, Zhang C, Sun Y. Significantly lengthened telomere in granulosa cells from women with polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2017;34(7):861–8.PubMedCrossRef
33.
go back to reference Zettler C, Bridges DC, Zhou XF, Rush RA. Detection of increased tissue concentrations of nerve growth factor with an improved extraction procedure. J Neurosci Res. 1996;46(5):581–94.PubMedCrossRef Zettler C, Bridges DC, Zhou XF, Rush RA. Detection of increased tissue concentrations of nerve growth factor with an improved extraction procedure. J Neurosci Res. 1996;46(5):581–94.PubMedCrossRef
34.
go back to reference Wang Y, Liang N, Yao G, Tian H, Zhai Y, Yin Y, Sun F. Knockdown of TrkA in cumulus oocyte complexes (COCs) inhibits EGF-induced cumulus expansion by down-regulation of IL-6. Mol Cell Endocrinol. 2014;382(2):804–13.PubMedCrossRef Wang Y, Liang N, Yao G, Tian H, Zhai Y, Yin Y, Sun F. Knockdown of TrkA in cumulus oocyte complexes (COCs) inhibits EGF-induced cumulus expansion by down-regulation of IL-6. Mol Cell Endocrinol. 2014;382(2):804–13.PubMedCrossRef
35.
go back to reference Su Y-Q, Denegre JM, Wigglesworth K, Pendola FL, O’Brien MJ, Eppig JJ. Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev Biol. 2003;263(1):126–38.PubMedCrossRef Su Y-Q, Denegre JM, Wigglesworth K, Pendola FL, O’Brien MJ, Eppig JJ. Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev Biol. 2003;263(1):126–38.PubMedCrossRef
36.
go back to reference Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366–9.PubMedPubMedCentralCrossRef Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366–9.PubMedPubMedCentralCrossRef
37.
go back to reference Wigglesworth K, Lee KB, O’Brien MJ, Peng J, Matzuk MM, Eppig JJ. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci. 2013;110(39):E3723–9.PubMedPubMedCentralCrossRef Wigglesworth K, Lee KB, O’Brien MJ, Peng J, Matzuk MM, Eppig JJ. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci. 2013;110(39):E3723–9.PubMedPubMedCentralCrossRef
38.
go back to reference Monti M, Redi C. Ologenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol Reprod Dev. 2009;76(10):994–1003.PubMedCrossRef Monti M, Redi C. Ologenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol Reprod Dev. 2009;76(10):994–1003.PubMedCrossRef
39.
go back to reference Palumbo MA, Giuffrida E, Gulino FA, Leonardi E, Cantarella G, Bernardini R. Nerve growth factor (NGF) levels in follicular fluid of infertile patients undergoing to in vitro fertilization (IVF) cycle. Gynecol Endocrinol. 2013;29(11):1002–4.PubMedCrossRef Palumbo MA, Giuffrida E, Gulino FA, Leonardi E, Cantarella G, Bernardini R. Nerve growth factor (NGF) levels in follicular fluid of infertile patients undergoing to in vitro fertilization (IVF) cycle. Gynecol Endocrinol. 2013;29(11):1002–4.PubMedCrossRef
40.
go back to reference Dissen GA, Lara HE, Leyton V, Paredes A, Hill DF, Costa ME, Martinez-Serrano A, Ojeda SR. Intraovarian excess of nerve growth factor increases androgen secretion and disrupts estrous cyclicity in the rat. Endocrinology. 2000;141(3):1073–82.PubMedCrossRef Dissen GA, Lara HE, Leyton V, Paredes A, Hill DF, Costa ME, Martinez-Serrano A, Ojeda SR. Intraovarian excess of nerve growth factor increases androgen secretion and disrupts estrous cyclicity in the rat. Endocrinology. 2000;141(3):1073–82.PubMedCrossRef
41.
go back to reference Wei LN, Huang R, Li LL, Fang C, Li Y, Liang XY. Reduced and delayed expression of GDF9 and BMP15 in ovarian tissues from women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31(11):1483–90.PubMedPubMedCentralCrossRef Wei LN, Huang R, Li LL, Fang C, Li Y, Liang XY. Reduced and delayed expression of GDF9 and BMP15 in ovarian tissues from women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31(11):1483–90.PubMedPubMedCentralCrossRef
42.
go back to reference Teixeira de Resende LO, Vireque AA, Santana LF, Moreno DA, de Sa Rosa e Silva AC, Ferriani RA, Scrideli CA, Reis RM. Single-cell expression analysis of BMP15 and GDF9 in mature oocytes and BMPR2 in cumulus cells of women with polycystic ovary syndrome undergoing controlled ovarian hyperstimulation. J Assist Reprod Genet. 2012;29(10):1057–65.CrossRef Teixeira de Resende LO, Vireque AA, Santana LF, Moreno DA, de Sa Rosa e Silva AC, Ferriani RA, Scrideli CA, Reis RM. Single-cell expression analysis of BMP15 and GDF9 in mature oocytes and BMPR2 in cumulus cells of women with polycystic ovary syndrome undergoing controlled ovarian hyperstimulation. J Assist Reprod Genet. 2012;29(10):1057–65.CrossRef
Metadata
Title
Excessive nerve growth factor impairs bidirectional communication between the oocyte and cumulus cells resulting in reduced oocyte competence
Authors
Yiwen Zhai
Guidong Yao
Faiza Rao
Yong Wang
Xiaoyuan Song
Fei Sun
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2018
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-018-0349-7

Other articles of this Issue 1/2018

Reproductive Biology and Endocrinology 1/2018 Go to the issue