Skip to main content
Top
Published in: Angiogenesis 4/2020

Open Access 01-11-2020 | Brief Communication

Excess centrosomes disrupt vascular lumenization and endothelial cell adherens junctions

Authors: Danielle B. Buglak, Erich J. Kushner, Allison P. Marvin, Katy L. Davis, Victoria L. Bautch

Published in: Angiogenesis | Issue 4/2020

Login to get access

Abstract

Proper blood vessel formation requires coordinated changes in endothelial cell polarity and rearrangement of cell–cell junctions to form a functional lumen. One important regulator of cell polarity is the centrosome, which acts as a microtubule organizing center. Excess centrosomes perturb aspects of endothelial cell polarity linked to migration, but whether centrosome number influences apical–basal polarity and cell–cell junctions is unknown. Here, we show that excess centrosomes alter the apical–basal polarity of endothelial cells in angiogenic sprouts and disrupt endothelial cell–cell adherens junctions. Endothelial cells with excess centrosomes had narrower lumens in a 3D sprouting angiogenesis model, and zebrafish intersegmental vessels had reduced perfusion following centrosome overduplication. These results indicate that endothelial cell centrosome number regulates proper lumenization downstream of effects on apical–basal polarity and cell–cell junctions. Endothelial cells with excess centrosomes are prevalent in tumor vessels, suggesting how centrosomes may contribute to tumor vessel dysfunction.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Kushner E, Bautch V (2013) Building blood vessels in development and disease. Curr Opin Hematol 20(3):231–236PubMed Kushner E, Bautch V (2013) Building blood vessels in development and disease. Curr Opin Hematol 20(3):231–236PubMed
4.
go back to reference Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312–322PubMed Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312–322PubMed
5.
go back to reference Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16(2):222–231PubMed Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16(2):222–231PubMed
6.
go back to reference Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S et al (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17(4):505–515PubMed Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S et al (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17(4):505–515PubMed
7.
go back to reference Wang Y, Kaiser MS, Larson JD, Nasevicius A, Clark KJ, Wadman SA et al (2010) Moesin1 and VE-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137(18):3119–3128PubMedPubMedCentral Wang Y, Kaiser MS, Larson JD, Nasevicius A, Clark KJ, Wadman SA et al (2010) Moesin1 and VE-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137(18):3119–3128PubMedPubMedCentral
8.
go back to reference Lee CY, Bautch VL (2011) Ups and downs of guided vessel sprouting: the role of polarity. Physiology 26(5):326–333PubMed Lee CY, Bautch VL (2011) Ups and downs of guided vessel sprouting: the role of polarity. Physiology 26(5):326–333PubMed
9.
go back to reference Pelton JC, Wright CE, Leitges M, Bautch VL (2014) Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation. Development 141(21):4121–4126PubMedPubMedCentral Pelton JC, Wright CE, Leitges M, Bautch VL (2014) Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation. Development 141(21):4121–4126PubMedPubMedCentral
11.
go back to reference Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380PubMedPubMedCentral Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380PubMedPubMedCentral
12.
go back to reference Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427PubMed Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427PubMed
13.
go back to reference Kushner EJ, Ferro LS, Liu J-Y, Durrant JR, Rogers SL, Dudley AC et al (2014) Excess centrosomes disrupt endothelial migration via centrosome scattering. J Cell Biol 206(2):257–272PubMedPubMedCentral Kushner EJ, Ferro LS, Liu J-Y, Durrant JR, Rogers SL, Dudley AC et al (2014) Excess centrosomes disrupt endothelial migration via centrosome scattering. J Cell Biol 206(2):257–272PubMedPubMedCentral
14.
go back to reference Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC et al (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64(22):8249–8255PubMed Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC et al (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64(22):8249–8255PubMed
15.
go back to reference Kollman JM, Merdes A, Mourey L, Agard DA (2011) Microtubule nucleations by gamma-tubulin complexes. Nat Rev Mol Cell Biol 12:709–721PubMedPubMedCentral Kollman JM, Merdes A, Mourey L, Agard DA (2011) Microtubule nucleations by gamma-tubulin complexes. Nat Rev Mol Cell Biol 12:709–721PubMedPubMedCentral
16.
go back to reference Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8:451–463PubMed Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8:451–463PubMed
17.
go back to reference Kushner EJ, Ferro LS, Yu Z, Bautch VL (2016) Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol Biol Cell 27(12):1911–1920PubMedPubMedCentral Kushner EJ, Ferro LS, Yu Z, Bautch VL (2016) Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol Biol Cell 27(12):1911–1920PubMedPubMedCentral
18.
go back to reference Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT et al (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510(7503):167–171PubMedPubMedCentral Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT et al (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510(7503):167–171PubMedPubMedCentral
19.
go back to reference Taylor SM, Nevis KR, Park HL, Rogers GC, Rogers SL, Cook JG et al (2010) Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels. Blood 116(16):3108–3117PubMedPubMedCentral Taylor SM, Nevis KR, Park HL, Rogers GC, Rogers SL, Cook JG et al (2010) Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels. Blood 116(16):3108–3117PubMedPubMedCentral
20.
go back to reference Spracklen AJ, Peifer M (2015) Actin and apical constriction: some (re)-assembly required. Dev Cell 35(6):662–664PubMed Spracklen AJ, Peifer M (2015) Actin and apical constriction: some (re)-assembly required. Dev Cell 35(6):662–664PubMed
21.
go back to reference Nowotarski SH, Peifer M (2014) Cell biology: a tense but good day for actin at cell-cell junctions. Curr Biol 24(15):R688–R690PubMed Nowotarski SH, Peifer M (2014) Cell biology: a tense but good day for actin at cell-cell junctions. Curr Biol 24(15):R688–R690PubMed
22.
go back to reference Carmeliet P, Lampugnani M-G, Moons L, Breviario F, Compernolle V, Bono F et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98(2):147–157PubMed Carmeliet P, Lampugnani M-G, Moons L, Breviario F, Compernolle V, Bono F et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98(2):147–157PubMed
23.
go back to reference Montero-Balaguer M, Swirsding K, Orsenigo F, Cotelli F, Mione M, Dejana E (2009) Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS ONE 4(6):e5772PubMedPubMedCentral Montero-Balaguer M, Swirsding K, Orsenigo F, Cotelli F, Mione M, Dejana E (2009) Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS ONE 4(6):e5772PubMedPubMedCentral
24.
go back to reference Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7(11):1140–1146PubMed Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7(11):1140–1146PubMed
25.
go back to reference Yu Z, Ruter DL, Kushner EJ, Bautch VL (2017) Excess centrosomes induce p53-dependent senescence without DNA damage in endothelial cells. FASEB J 10:4295–4304 Yu Z, Ruter DL, Kushner EJ, Bautch VL (2017) Excess centrosomes induce p53-dependent senescence without DNA damage in endothelial cells. FASEB J 10:4295–4304
26.
go back to reference Iden S, Rehder D, August B, Suzuki A, Wolburg-Buchholz K, Wolburg H et al (2006) A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep 7(12):1239–1246PubMedPubMedCentral Iden S, Rehder D, August B, Suzuki A, Wolburg-Buchholz K, Wolburg H et al (2006) A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep 7(12):1239–1246PubMedPubMedCentral
27.
go back to reference Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M, Gebala V et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16(4):309–321PubMed Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M, Gebala V et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16(4):309–321PubMed
28.
go back to reference Paatero I, Sauteur L, Lee M, Lagendijk AK, Heutschi D, Wiesner C et al (2018) Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction. Nat Commun 9(1):3545PubMedPubMedCentral Paatero I, Sauteur L, Lee M, Lagendijk AK, Heutschi D, Wiesner C et al (2018) Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction. Nat Commun 9(1):3545PubMedPubMedCentral
29.
go back to reference Lampugnani M-G, Orsenigo F, Rudini N, Maddaluno L, Boulday G, Chapon F et al (2010) CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123:1073–1080PubMed Lampugnani M-G, Orsenigo F, Rudini N, Maddaluno L, Boulday G, Chapon F et al (2010) CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123:1073–1080PubMed
30.
go back to reference Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9:160–170PubMed Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9:160–170PubMed
31.
go back to reference Komarova YA, Huang F, Geyer M, Daneshjou N, Garcia A, Idalino L et al (2012) VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assemble adherens junctions. Mol Cell 48(6):914–925PubMedPubMedCentral Komarova YA, Huang F, Geyer M, Daneshjou N, Garcia A, Idalino L et al (2012) VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assemble adherens junctions. Mol Cell 48(6):914–925PubMedPubMedCentral
32.
go back to reference Lenard A, Ellertsdottir E, Herwig L, Krudewig A, Sauteur L, Belting H-G et al (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25(5):492–506PubMed Lenard A, Ellertsdottir E, Herwig L, Krudewig A, Sauteur L, Belting H-G et al (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25(5):492–506PubMed
33.
go back to reference Herwig L, Blum Y, Krudewig A, Ellertsdottir E, Lenard A, Belting H-G et al (2011) Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21(22):1942–1948PubMed Herwig L, Blum Y, Krudewig A, Ellertsdottir E, Lenard A, Belting H-G et al (2011) Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21(22):1942–1948PubMed
34.
go back to reference Campbell HK, Maiers JL, DeMali KA (2017) Interplay between tight junctions and adherens junctions. Exp Cell Res 358(1):39–44PubMedPubMedCentral Campbell HK, Maiers JL, DeMali KA (2017) Interplay between tight junctions and adherens junctions. Exp Cell Res 358(1):39–44PubMedPubMedCentral
35.
go back to reference Odenwald MA, Choi W, Buckley A, Shashikanth N, Joseph NE, Wang Y et al (2017) ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci 130(1):243–259PubMedPubMedCentral Odenwald MA, Choi W, Buckley A, Shashikanth N, Joseph NE, Wang Y et al (2017) ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci 130(1):243–259PubMedPubMedCentral
36.
go back to reference Gebala V, Collins R, Geudens I, Phng L-K, Gerhardt H (2016) Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 18(4):443–450PubMedPubMedCentral Gebala V, Collins R, Geudens I, Phng L-K, Gerhardt H (2016) Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 18(4):443–450PubMedPubMedCentral
37.
go back to reference Hultin S, Zheng Y, Mahdi M, Vertuani S, Gentili C, Balland M et al (2014) AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion. Nat Commun 5:3743PubMed Hultin S, Zheng Y, Mahdi M, Vertuani S, Gentili C, Balland M et al (2014) AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion. Nat Commun 5:3743PubMed
38.
go back to reference Roudnicky F, Poyet C, Wild P, Krampitz S, Negrini F, Huggenberger R et al (2013) Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res 73(3):1097–1106PubMed Roudnicky F, Poyet C, Wild P, Krampitz S, Negrini F, Huggenberger R et al (2013) Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res 73(3):1097–1106PubMed
39.
go back to reference Goveia J, Rohlenova K, Taverna F, Treps L, Conradi L, Pircher A et al (2020) An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37(1):21–36PubMed Goveia J, Rohlenova K, Taverna F, Treps L, Conradi L, Pircher A et al (2020) An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37(1):21–36PubMed
40.
go back to reference Brossa A, Buono L, Fallo S, Pla AF, Munaron L, Bussolati B (2019) Alternative strategies to inhibit tumor vascularization. Int J Mol Sci 20:6180PubMedCentral Brossa A, Buono L, Fallo S, Pla AF, Munaron L, Bussolati B (2019) Alternative strategies to inhibit tumor vascularization. Int J Mol Sci 20:6180PubMedCentral
41.
go back to reference Tamura R, Tanaka T, Akasaki Y, Murayama Y, Yoshida K, Sasaki H (2019) The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironmnet: perspectives for therapeutic implications. Med Oncol 37(1):2PubMed Tamura R, Tanaka T, Akasaki Y, Murayama Y, Yoshida K, Sasaki H (2019) The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironmnet: perspectives for therapeutic implications. Med Oncol 37(1):2PubMed
42.
go back to reference Sakurai Y, Akita H, Harashima H (2019) Targeting tumor endothelial cells with nanoparticles. Int J Mol Sci 20(23):5819PubMedCentral Sakurai Y, Akita H, Harashima H (2019) Targeting tumor endothelial cells with nanoparticles. Int J Mol Sci 20(23):5819PubMedCentral
43.
go back to reference Zhao Y, Wang X (2019) Plk4: a promising target for cancer therapy. J Cancer Res Clin Oncol 145:2413–2422PubMed Zhao Y, Wang X (2019) Plk4: a promising target for cancer therapy. J Cancer Res Clin Oncol 145:2413–2422PubMed
45.
go back to reference Nakatsu MN, Hughes CCW (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82PubMed Nakatsu MN, Hughes CCW (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82PubMed
46.
go back to reference Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36(6):654–667PubMedPubMedCentral Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36(6):654–667PubMedPubMedCentral
47.
go back to reference Di Donato V, De Santis F, Auer TO, Testa N, Sánchez-Iranzo H, Mercader N et al (2016) 2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Res 26(5):681–692PubMedPubMedCentral Di Donato V, De Santis F, Auer TO, Testa N, Sánchez-Iranzo H, Mercader N et al (2016) 2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Res 26(5):681–692PubMedPubMedCentral
Metadata
Title
Excess centrosomes disrupt vascular lumenization and endothelial cell adherens junctions
Authors
Danielle B. Buglak
Erich J. Kushner
Allison P. Marvin
Katy L. Davis
Victoria L. Bautch
Publication date
01-11-2020
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 4/2020
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-020-09737-7

Other articles of this Issue 4/2020

Angiogenesis 4/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine