Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system

Authors: Pauline Gourdain, Clara Ballerini, Arnaud B Nicot, Claude Carnaud

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

The cellular prion protein (PrPc) is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc) initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE) is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered.

Method

To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS) were generated. Mice were subsequently challenged with MOG35-55 peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells.

Results

First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells.

Conclusions

In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not synergize for disease worsening. These conclusions highlight the critical role of PrPc in maintaining the integrity of the CNS in situations of stress, especially during a neuroinflammatory insult.
Literature
1.
go back to reference Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE: Purification and structural studies of a major scrapie prion protein. Cell 1984, 38:127–134.CrossRefPubMed Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE: Purification and structural studies of a major scrapie prion protein. Cell 1984, 38:127–134.CrossRefPubMed
3.
go back to reference Wopfner F, Weidenhofer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schatzl HM: Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 1999, 289:1163–1178.CrossRefPubMed Wopfner F, Weidenhofer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schatzl HM: Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 1999, 289:1163–1178.CrossRefPubMed
4.
go back to reference Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA: Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 2009, 7:e55.CrossRefPubMed Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA: Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 2009, 7:e55.CrossRefPubMed
5.
go back to reference Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C: Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992, 356:577–582.CrossRefPubMed Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C: Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992, 356:577–582.CrossRefPubMed
6.
go back to reference Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J: 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 1994, 8:121–127.CrossRefPubMed Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J: 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 1994, 8:121–127.CrossRefPubMed
7.
go back to reference Aguzzi A, Baumann F, Bremer J: The prion's elusive reason for being. Annu Rev Neurosci 2008, 31:439–477.CrossRefPubMed Aguzzi A, Baumann F, Bremer J: The prion's elusive reason for being. Annu Rev Neurosci 2008, 31:439–477.CrossRefPubMed
8.
go back to reference Brown HR, Goller NL, Rudelli RD, Merz GS, Wolfe GC, Wisniewski HM, Robakis NK: The mRNA encoding the scrapie agent protein is present in a variety of non-neuronal cells. Acta Neuropathol 1990, 80:1–6.CrossRefPubMed Brown HR, Goller NL, Rudelli RD, Merz GS, Wolfe GC, Wisniewski HM, Robakis NK: The mRNA encoding the scrapie agent protein is present in a variety of non-neuronal cells. Acta Neuropathol 1990, 80:1–6.CrossRefPubMed
9.
go back to reference Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ: Scrapie prion proteins are synthesized in neurons. Am J Pathol 1986, 122:1–5.PubMedPubMedCentral Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ: Scrapie prion proteins are synthesized in neurons. Am J Pathol 1986, 122:1–5.PubMedPubMedCentral
10.
go back to reference Burthem J, Urban B, Pain A, Roberts DJ: The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood 2001, 98:3733–3738.CrossRefPubMed Burthem J, Urban B, Pain A, Roberts DJ: The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood 2001, 98:3733–3738.CrossRefPubMed
11.
go back to reference Ford MJ, Burton LJ, Morris RJ, Hall SM: Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 2002, 113:177–192.CrossRefPubMed Ford MJ, Burton LJ, Morris RJ, Hall SM: Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 2002, 113:177–192.CrossRefPubMed
12.
go back to reference Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R: Cellular prion protein transduces neuroprotective signals. EMBO J 2002, 21:3317–3326.CrossRefPubMedPubMedCentral Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R: Cellular prion protein transduces neuroprotective signals. EMBO J 2002, 21:3317–3326.CrossRefPubMedPubMedCentral
13.
go back to reference McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, Ritchie D, Brannan F, Head MW, Ironside JW, et al.: Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol 2004, 165:227–235.CrossRefPubMedPubMedCentral McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, Ritchie D, Brannan F, Head MW, Ironside JW, et al.: Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol 2004, 165:227–235.CrossRefPubMedPubMedCentral
14.
go back to reference Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG: Prion protein is necessary for normal synaptic function. Nature 1994, 370:295–297.CrossRefPubMed Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG: Prion protein is necessary for normal synaptic function. Nature 1994, 370:295–297.CrossRefPubMed
15.
go back to reference Chen S, Mange A, Dong L, Lehmann S, Schachner M: Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 2003, 22:227–233.CrossRefPubMed Chen S, Mange A, Dong L, Lehmann S, Schachner M: Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 2003, 22:227–233.CrossRefPubMed
16.
go back to reference Prestori F, Rossi P, Bearzatto B, Laine J, Necchi D, Diwakar S, Schiffmann SN, Axelrad H, D'Angelo E: Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J Neurosci 2008, 28:7091–7103.CrossRefPubMed Prestori F, Rossi P, Bearzatto B, Laine J, Necchi D, Diwakar S, Schiffmann SN, Axelrad H, D'Angelo E: Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J Neurosci 2008, 28:7091–7103.CrossRefPubMed
17.
go back to reference Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC: Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 1996, 380:639–642.CrossRefPubMed Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC: Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 1996, 380:639–642.CrossRefPubMed
18.
go back to reference Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A: Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 2010, 13:310–318.CrossRefPubMed Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A: Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 2010, 13:310–318.CrossRefPubMed
19.
go back to reference Nazor KE, Seward T, Telling GC: Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim Biophys Acta 2007, 1772:645–653.CrossRefPubMedPubMedCentral Nazor KE, Seward T, Telling GC: Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim Biophys Acta 2007, 1772:645–653.CrossRefPubMedPubMedCentral
20.
go back to reference Rial D, Duarte FS, Xikota JC, Schmitz AE, Dafre AL, Figueiredo CP, Walz R, Prediger RD: Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience 2009, 164:896–907.CrossRefPubMed Rial D, Duarte FS, Xikota JC, Schmitz AE, Dafre AL, Figueiredo CP, Walz R, Prediger RD: Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience 2009, 164:896–907.CrossRefPubMed
22.
go back to reference Ballerini C, Gourdain P, Bachy V, Blanchard N, Levavasseur E, Gregoire S, Fontes P, Aucouturier P, Hivroz C, Carnaud C: Functional implication of cellular prion protein in antigen-driven interactions between T cells and dendritic cells. J Immunol 2006, 176:7254–7262.CrossRefPubMed Ballerini C, Gourdain P, Bachy V, Blanchard N, Levavasseur E, Gregoire S, Fontes P, Aucouturier P, Hivroz C, Carnaud C: Functional implication of cellular prion protein in antigen-driven interactions between T cells and dendritic cells. J Immunol 2006, 176:7254–7262.CrossRefPubMed
23.
go back to reference Mattei V, Garofalo T, Misasi R, Circella A, Manganelli V, Lucania G, Pavan A, Sorice M: Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett 2004, 560:14–18.CrossRefPubMed Mattei V, Garofalo T, Misasi R, Circella A, Manganelli V, Lucania G, Pavan A, Sorice M: Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett 2004, 560:14–18.CrossRefPubMed
24.
go back to reference Cashman NR, Loertscher R, Nalbantoglu J, Shaw I, Kascsak RJ, Bolton DC, Bendheim PE: Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 1990, 61:185–192.CrossRefPubMed Cashman NR, Loertscher R, Nalbantoglu J, Shaw I, Kascsak RJ, Bolton DC, Bendheim PE: Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 1990, 61:185–192.CrossRefPubMed
25.
26.
go back to reference Zhang CC, Steele AD, Lindquist S, Lodish HF: Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA 2006, 103:2184–2189.CrossRefPubMedPubMedCentral Zhang CC, Steele AD, Lindquist S, Lodish HF: Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA 2006, 103:2184–2189.CrossRefPubMedPubMedCentral
27.
go back to reference Jouvin-Marche E, Attuil-Audenis V, Aude-Garcia C, Rachidi W, Zabel M, Podevin-Dimster V, Siret C, Huber C, Martinic M, Riondel J, et al.: Overexpression of cellular prion protein induces an antioxidant environment altering T cell development in the thymus. J Immunol 2006, 176:3490–3497.CrossRefPubMed Jouvin-Marche E, Attuil-Audenis V, Aude-Garcia C, Rachidi W, Zabel M, Podevin-Dimster V, Siret C, Huber C, Martinic M, Riondel J, et al.: Overexpression of cellular prion protein induces an antioxidant environment altering T cell development in the thymus. J Immunol 2006, 176:3490–3497.CrossRefPubMed
28.
go back to reference de Almeida CJ, Chiarini LB, da Silva JP, PM , ES , Martins MA, Linden R: The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 2005, 77:238–246.CrossRefPubMed de Almeida CJ, Chiarini LB, da Silva JP, PM , ES , Martins MA, Linden R: The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 2005, 77:238–246.CrossRefPubMed
29.
go back to reference Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009, 457:1128–1132.CrossRefPubMedPubMedCentral Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009, 457:1128–1132.CrossRefPubMedPubMedCentral
30.
go back to reference Ingram RJ, Isaacs JD, Kaur G, Lowther DE, Reynolds CJ, Boyton RJ, Collinge J, Jackson GS, Altmann DM: A role of cellular prion protein in programming T-cell cytokine responses in disease. FASEB J 2009, 23:1672–1684.CrossRefPubMed Ingram RJ, Isaacs JD, Kaur G, Lowther DE, Reynolds CJ, Boyton RJ, Collinge J, Jackson GS, Altmann DM: A role of cellular prion protein in programming T-cell cytokine responses in disease. FASEB J 2009, 23:1672–1684.CrossRefPubMed
31.
go back to reference Tsutsui S, Hahn JN, Johnson TA, Ali Z, Jirik FR: Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis. Am J Pathol 2008, 173:1029–1041.CrossRefPubMedPubMedCentral Tsutsui S, Hahn JN, Johnson TA, Ali Z, Jirik FR: Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis. Am J Pathol 2008, 173:1029–1041.CrossRefPubMedPubMedCentral
32.
go back to reference Hu W, Nessler S, Hemmer B, Eagar TN, Kane LP, Leliveld SR, Muller-Schiffmann A, Gocke AR, Lovett-Racke A, Ben LH, et al.: Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling. Brain 2010, 133:375–388.CrossRefPubMedPubMedCentral Hu W, Nessler S, Hemmer B, Eagar TN, Kane LP, Leliveld SR, Muller-Schiffmann A, Gocke AR, Lovett-Racke A, Ben LH, et al.: Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling. Brain 2010, 133:375–388.CrossRefPubMedPubMedCentral
34.
go back to reference Gregoire S, Logre C, Metharom P, Loing E, Chomilier J, Rosset MB, Aucouturier P, Carnaud C: Identification of two immunogenic domains of the prion protein-PrP-which activate class II-restricted T cells and elicit antibody responses against the native molecule. J Leukoc Biol 2004, 76:125–134.CrossRefPubMed Gregoire S, Logre C, Metharom P, Loing E, Chomilier J, Rosset MB, Aucouturier P, Carnaud C: Identification of two immunogenic domains of the prion protein-PrP-which activate class II-restricted T cells and elicit antibody responses against the native molecule. J Leukoc Biol 2004, 76:125–134.CrossRefPubMed
35.
go back to reference Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK: Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 2003, 197:1073–1081.CrossRefPubMedPubMedCentral Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK: Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 2003, 197:1073–1081.CrossRefPubMedPubMedCentral
36.
go back to reference Malissen M, Gillet A, Ardouin L, Bouvier G, Trucy J, Ferrier P, Vivier E, Malissen B: Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 1995, 14:4641–4653.PubMedPubMedCentral Malissen M, Gillet A, Ardouin L, Bouvier G, Trucy J, Ferrier P, Vivier E, Malissen B: Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 1995, 14:4641–4653.PubMedPubMedCentral
37.
go back to reference Sacquin A, Bergot AS, Aucouturier P, Bruley-Rosset M: Contribution of antibody and T cell-specific responses to the progression of 139A-scrapie in C57BL/6 mice immunized with prion protein peptides. J Immunol 2008, 181:768–775.CrossRefPubMed Sacquin A, Bergot AS, Aucouturier P, Bruley-Rosset M: Contribution of antibody and T cell-specific responses to the progression of 139A-scrapie in C57BL/6 mice immunized with prion protein peptides. J Immunol 2008, 181:768–775.CrossRefPubMed
38.
go back to reference Giuliani F, Metz LM, Wilson T, Fan Y, Bar-Or A, Yong VW: Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. J Neuroimmunol 2005, 158:213–221.CrossRefPubMed Giuliani F, Metz LM, Wilson T, Fan Y, Bar-Or A, Yong VW: Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. J Neuroimmunol 2005, 158:213–221.CrossRefPubMed
39.
go back to reference Isaacs JD, Garden OA, Kaur G, Collinge J, Jackson GS, Altmann DM: The cellular prion protein is preferentially expressed by CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 2008, 125:313–319.CrossRefPubMedPubMedCentral Isaacs JD, Garden OA, Kaur G, Collinge J, Jackson GS, Altmann DM: The cellular prion protein is preferentially expressed by CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 2008, 125:313–319.CrossRefPubMedPubMedCentral
40.
go back to reference Liu JQ, Carl Jr, Joshi PS, RayChaudhury A, Pu XA, Shi FD, Bai XF: CD24 on the resident cells of the central nervous system enhances experimental autoimmune encephalomyelitis. J Immunol 2007, 178:6227–6235.CrossRefPubMed Liu JQ, Carl Jr, Joshi PS, RayChaudhury A, Pu XA, Shi FD, Bai XF: CD24 on the resident cells of the central nervous system enhances experimental autoimmune encephalomyelitis. J Immunol 2007, 178:6227–6235.CrossRefPubMed
41.
go back to reference Lelu K, Laffont S, Delpy L, Paulet PE, Perinat T, Tschanz SA, Pelletier L, Engelhardt B, Guery JC: Estrogen Receptor {alpha} Signaling in T Lymphocytes Is Required for Estradiol-Mediated Inhibition of Th1 and Th17 Cell Differentiation and Protection against Experimental Autoimmune Encephalomyelitis. J Immunol 2011, 187:2386–2393.CrossRefPubMed Lelu K, Laffont S, Delpy L, Paulet PE, Perinat T, Tschanz SA, Pelletier L, Engelhardt B, Guery JC: Estrogen Receptor {alpha} Signaling in T Lymphocytes Is Required for Estradiol-Mediated Inhibition of Th1 and Th17 Cell Differentiation and Protection against Experimental Autoimmune Encephalomyelitis. J Immunol 2011, 187:2386–2393.CrossRefPubMed
42.
go back to reference Ren Z, Wang Y, Liebenson D, Liggett T, Goswami R, Stefoski D, Balabanov R: IRF-1 signaling in central nervous system glial cells regulates inflammatory demyelination. J Neuroimmunol 2011, 233:147–159.CrossRefPubMed Ren Z, Wang Y, Liebenson D, Liggett T, Goswami R, Stefoski D, Balabanov R: IRF-1 signaling in central nervous system glial cells regulates inflammatory demyelination. J Neuroimmunol 2011, 233:147–159.CrossRefPubMed
43.
go back to reference Paterson PY, Harvey JM: Irradiation potentiation of cellular transfer of EAE: time course and locus of effect in irradiated recipient Lewis rats. Cell Immunol 1978, 41:256–263.CrossRefPubMed Paterson PY, Harvey JM: Irradiation potentiation of cellular transfer of EAE: time course and locus of effect in irradiated recipient Lewis rats. Cell Immunol 1978, 41:256–263.CrossRefPubMed
44.
go back to reference Brown DA, Sawchenko PE: Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 2007, 502:236–260.CrossRefPubMed Brown DA, Sawchenko PE: Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 2007, 502:236–260.CrossRefPubMed
45.
go back to reference Nicot A, Ratnakar PV, Ron Y, Chen CC, Elkabes S: Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain 2003, 126:398–412.CrossRefPubMed Nicot A, Ratnakar PV, Ron Y, Chen CC, Elkabes S: Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain 2003, 126:398–412.CrossRefPubMed
46.
go back to reference Marcos D, Sepulveda MR, Berrocal M, Mata AM: Ontogeny of ATP hydrolysis and isoform expression of the plasma membrane Ca(2+)-ATPase in mouse brain. BMC Neurosci 2009, 10:112.CrossRefPubMedPubMedCentral Marcos D, Sepulveda MR, Berrocal M, Mata AM: Ontogeny of ATP hydrolysis and isoform expression of the plasma membrane Ca(2+)-ATPase in mouse brain. BMC Neurosci 2009, 10:112.CrossRefPubMedPubMedCentral
47.
go back to reference Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J: Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 2002, 21:202–210.CrossRefPubMedPubMedCentral Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J: Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 2002, 21:202–210.CrossRefPubMedPubMedCentral
48.
go back to reference Iken S, Bachy V, Gourdain P, Lim A, Gregoire S, Chaigneau T, Aucouturier P, Carnaud C: Th2-polarised PrP-specific Transgenic T-cells Confer Partial Protection against Murine Scrapie. PLoS Pathog 2011, 7:e1002216.CrossRefPubMedPubMedCentral Iken S, Bachy V, Gourdain P, Lim A, Gregoire S, Chaigneau T, Aucouturier P, Carnaud C: Th2-polarised PrP-specific Transgenic T-cells Confer Partial Protection against Murine Scrapie. PLoS Pathog 2011, 7:e1002216.CrossRefPubMedPubMedCentral
49.
go back to reference Hickey WF, Kimura H: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239:290–292.CrossRefPubMed Hickey WF, Kimura H: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239:290–292.CrossRefPubMed
50.
go back to reference Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007, 10:1538–1543.CrossRefPubMed Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007, 10:1538–1543.CrossRefPubMed
51.
go back to reference Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007, 10:1544–1553.CrossRefPubMed Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007, 10:1544–1553.CrossRefPubMed
52.
go back to reference Martins VR, Beraldo FH, Hajj GN, Lopes MH, Lee KS, Prado MM, Linden R: Prion protein: orchestrating neurotrophic activities. Curr Issues Mol Biol 2009, 12:63–86.PubMed Martins VR, Beraldo FH, Hajj GN, Lopes MH, Lee KS, Prado MM, Linden R: Prion protein: orchestrating neurotrophic activities. Curr Issues Mol Biol 2009, 12:63–86.PubMed
53.
go back to reference Roucou X, Gains M, LeBlanc AC: Neuroprotective functions of prion protein. J Neurosci Res 2004, 75:153–161.CrossRefPubMed Roucou X, Gains M, LeBlanc AC: Neuroprotective functions of prion protein. J Neurosci Res 2004, 75:153–161.CrossRefPubMed
54.
go back to reference Das A, Guyton MK, Matzelle DD, Ray SK, Banik NL: Time-dependent increases in protease activities for neuronal apoptosis in spinal cords of Lewis rats during development of acute experimental autoimmune encephalomyelitis. J Neurosci Res 2008, 86:2992–3001.CrossRefPubMedPubMedCentral Das A, Guyton MK, Matzelle DD, Ray SK, Banik NL: Time-dependent increases in protease activities for neuronal apoptosis in spinal cords of Lewis rats during development of acute experimental autoimmune encephalomyelitis. J Neurosci Res 2008, 86:2992–3001.CrossRefPubMedPubMedCentral
55.
go back to reference Guyton MK, Brahmachari S, Das A, Samantaray S, Inoue J, Azuma M, Ray SK, Banik NL: Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells. J Neurochem 2009, 110:1895–1907.CrossRefPubMedPubMedCentral Guyton MK, Brahmachari S, Das A, Samantaray S, Inoue J, Azuma M, Ray SK, Banik NL: Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells. J Neurochem 2009, 110:1895–1907.CrossRefPubMedPubMedCentral
56.
go back to reference Guy J, Ellis EA, Hope GM, Rao NA: Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr Eye Res 1989, 8:467–477.CrossRefPubMed Guy J, Ellis EA, Hope GM, Rao NA: Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr Eye Res 1989, 8:467–477.CrossRefPubMed
57.
go back to reference Matute C, Alberdi E, Domercq M, Perez-Cerda F, Perez-Samartin A, Sanchez-Gomez MV: The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 2001, 24:224–230.CrossRefPubMed Matute C, Alberdi E, Domercq M, Perez-Cerda F, Perez-Samartin A, Sanchez-Gomez MV: The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 2001, 24:224–230.CrossRefPubMed
58.
go back to reference Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A: Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 2001, 276:39145–39149.CrossRefPubMed Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A: Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 2001, 276:39145–39149.CrossRefPubMed
59.
go back to reference Kim BH, Lee HG, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS: The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res Mol Brain Res 2004, 124:40–50.CrossRefPubMed Kim BH, Lee HG, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS: The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res Mol Brain Res 2004, 124:40–50.CrossRefPubMed
60.
go back to reference Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA: Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 1997, 146:104–112.CrossRefPubMed Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA: Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 1997, 146:104–112.CrossRefPubMed
61.
go back to reference Wong BS, Pan T, Liu T, Li R, Gambetti P, Sy MS: Differential contribution of superoxide dismutase activity by prion protein in vivo. Biochem. Biophys. Res Commun 2000, 273:136–139. Wong BS, Pan T, Liu T, Li R, Gambetti P, Sy MS: Differential contribution of superoxide dismutase activity by prion protein in vivo. Biochem. Biophys. Res Commun 2000, 273:136–139.
62.
go back to reference Hutter G, Heppner FL, Aguzzi A: No superoxide dismutase activity of cellular prion protein in vivo. Biol Chem 2003, 384:1279–1285.CrossRefPubMed Hutter G, Heppner FL, Aguzzi A: No superoxide dismutase activity of cellular prion protein in vivo. Biol Chem 2003, 384:1279–1285.CrossRefPubMed
63.
go back to reference Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW: Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 2008, 181:551–565.CrossRefPubMedPubMedCentral Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW: Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 2008, 181:551–565.CrossRefPubMedPubMedCentral
64.
go back to reference Watts JC, Westaway D: The prion protein family: diversity, rivalry, and dysfunction. Biochim Biophys Acta 2007, 1772:654–672.CrossRefPubMed Watts JC, Westaway D: The prion protein family: diversity, rivalry, and dysfunction. Biochim Biophys Acta 2007, 1772:654–672.CrossRefPubMed
65.
go back to reference Sakthivelu V, Seidel RP, Winklhofer KF, Tatzelt J: Conserved stress-protective activity between prion protein and Shadoo. J Biol Chem 2011, 286:8901–8908.CrossRefPubMedPubMedCentral Sakthivelu V, Seidel RP, Winklhofer KF, Tatzelt J: Conserved stress-protective activity between prion protein and Shadoo. J Biol Chem 2011, 286:8901–8908.CrossRefPubMedPubMedCentral
66.
go back to reference Baudouin SJ, Angibaud J, Loussouarn G, Bonnamain V, Matsuura A, Kinebuchi M, Naveilhan P, Boudin H: The signaling adaptor protein CD3zeta is a negative regulator of dendrite development in young neurons. Mol. Biol Cell 2008, 19:2444–2456. Baudouin SJ, Angibaud J, Loussouarn G, Bonnamain V, Matsuura A, Kinebuchi M, Naveilhan P, Boudin H: The signaling adaptor protein CD3zeta is a negative regulator of dendrite development in young neurons. Mol. Biol Cell 2008, 19:2444–2456.
67.
go back to reference Mizui M, Kumanogoh A, Kikutani H: Immune semaphorins: novel features of neural guidance molecules. J Clin Immunol 2009, 29:1–11.CrossRefPubMed Mizui M, Kumanogoh A, Kikutani H: Immune semaphorins: novel features of neural guidance molecules. J Clin Immunol 2009, 29:1–11.CrossRefPubMed
Metadata
Title
Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system
Authors
Pauline Gourdain
Clara Ballerini
Arnaud B Nicot
Claude Carnaud
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-25

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue