Skip to main content
Top
Published in: Cancer Cell International 1/2016

Open Access 01-12-2016 | Primary research

Evidence that phospholipase C is involved in the antitumour action of NSC768313, a new thieno[2,3-b]pyridine derivative

Authors: Jóhannes Reynisson, Jagdish K. Jaiswal, David Barker, Stacey A. N. D’mello, William A. Denny, Bruce C. Baguley, Euphemia Y. Leung

Published in: Cancer Cell International | Issue 1/2016

Login to get access

Abstract

Background

The thieno[2,3-b]pyridines were discovered by virtual high throughput screening as potential inhibitors of phospholipase C (PLC) isoforms and showed potent growth inhibitory effects in National Cancer Institute’s human tumour cell line panel (NCI60). The mechanism of the anti-proliferative activity of thieno[2,3-b]pyridines is explored here.

Objectives

We aimed to investigate the basis for the anti-proliferative activity of these thieno[2,3-b]pyridines and to determine whether the cellular inhibition was related to their inhibition of PLC.

Methods

Four breast cancer cell lines were used to assess the anti-proliferative effects (IC50 values) of six representative thieno[2,3-b]pyridines. The most potent compound (derivative 3; NSC768313), was further studied in MDA-MB-231 cells. DNA damage was examined by γH2AX expression level, and cell cycle arrest by flow cytometry. Cell morphology was examined by tubulin antibody staining. The growth inhibitory effect of combination treatment with derivative 3 and paclitaxel (tubulin inhibitor), doxorubicin (topoisomerase II inhibitor) or camptothecin (topoisomerase I inhibitor) was evaluated. A preliminary mouse toxicity assay was used to evaluate the pharmacological properties.

Results

Addition of the thieno[2,3-b]pyridine derivative 3 to the MDA-MB-231 cells induced G2/M growth inhibition, cell cycle arrest in G2-phase, membrane blebbing and the formation of multinucleated cells. It did not induce DNA damage, mitotic arrest or changes in calcium ion flux. Combination of derivative 3 with paclitaxel showed a high degree of synergy, while combinations with doxorubicin and camptothecin showed only additive effects. A mouse pharmacokinetic study of derivative 3 showed that after intraperitoneal injection of a single does (10 mg/Kg), the Cmax was 0.087 μmol/L and the half-life was 4.11 h.

Conclusions

The results are consistent with a mechanism in which thieno[2,3-b]pyridine derivatives interact with PLC isoforms (possibly PLC-δ), which in turn affect the cellular dynamics of tubulin-β, inducing cell cycle arrest in G2-phase. We conclude that these compounds have novelty because of their PLC target and may have utility in combination with mitotic poisons for cancer treatment.
Literature
5.
go back to reference Wells A, Grandis JR. Phospholipase C-gamma1 in tumor progression. Clin Exp Metastasis. 2003;20(4):285–90.CrossRefPubMed Wells A, Grandis JR. Phospholipase C-gamma1 in tumor progression. Clin Exp Metastasis. 2003;20(4):285–90.CrossRefPubMed
6.
go back to reference Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000;80(4):1291–335.PubMed Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000;80(4):1291–335.PubMed
11.
go back to reference Arabshahi HJ, Leung E, Barker D, Reynisson J. The development of thieno[2,3-b]pyridine analogues as anticancer agents applying in silico methods. Med Chem Comm. 2014;5:186–91. doi:10.1039/c3md00320e.CrossRef Arabshahi HJ, Leung E, Barker D, Reynisson J. The development of thieno[2,3-b]pyridine analogues as anticancer agents applying in silico methods. Med Chem Comm. 2014;5:186–91. doi:10.​1039/​c3md00320e.CrossRef
13.
go back to reference Leung E, Hung JM, Barker D, Reynisson J. The effect of a thieno[2,3-b] pyridine PLC-gamma inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells. Medchemcomm. 2014;5(1):99–106. doi:10.1039/C3md00290j.CrossRef Leung E, Hung JM, Barker D, Reynisson J. The effect of a thieno[2,3-b] pyridine PLC-gamma inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells. Medchemcomm. 2014;5(1):99–106. doi:10.​1039/​C3md00290j.CrossRef
17.
go back to reference Leung E, Rewcastle GW, Joseph WR, Rosengren RJ, Larsen L, Baguley BC. Identification of cyclohexanone derivatives that act as catalytic inhibitors of topoisomerase I: effects on tamoxifen-resistant MCF-7 cancer cells. Invest New Drugs. 2012;30(6):2103–12. doi:10.1007/s10637-011-9768-4.CrossRefPubMedPubMedCentral Leung E, Rewcastle GW, Joseph WR, Rosengren RJ, Larsen L, Baguley BC. Identification of cyclohexanone derivatives that act as catalytic inhibitors of topoisomerase I: effects on tamoxifen-resistant MCF-7 cancer cells. Invest New Drugs. 2012;30(6):2103–12. doi:10.​1007/​s10637-011-9768-4.CrossRefPubMedPubMedCentral
19.
go back to reference Goncharova EA, Lim P, Goncharov DA, Eszterhas A, Panettieri RA, Krymskaya VP. Assays for in vitro monitoring of proliferation of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cells. Nat Protocols. 2007;1(6):2905–8.CrossRef Goncharova EA, Lim P, Goncharov DA, Eszterhas A, Panettieri RA, Krymskaya VP. Assays for in vitro monitoring of proliferation of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cells. Nat Protocols. 2007;1(6):2905–8.CrossRef
20.
go back to reference Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein LA, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst. 1989;81(14):1088–92.CrossRefPubMed Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein LA, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst. 1989;81(14):1088–92.CrossRefPubMed
21.
go back to reference DeBonis S, Skoufias DA, Indorato R-L, Liger F, Marquet B, Laggner C, et al. Structure-activity relationship of S-Trityl-l-Cysteine analogues as inhibitors of the human mitotic kinesin Eg5. J Med Chem. 2008;51(5):1115–25. doi:10.1021/jm070606z.CrossRefPubMed DeBonis S, Skoufias DA, Indorato R-L, Liger F, Marquet B, Laggner C, et al. Structure-activity relationship of S-Trityl-l-Cysteine analogues as inhibitors of the human mitotic kinesin Eg5. J Med Chem. 2008;51(5):1115–25. doi:10.​1021/​jm070606z.CrossRefPubMed
22.
go back to reference Ronot X, Adolphe M, Kuch D, Jaffray P, Lechat P, Deysson G. Effect of sodium cis-beta-4-methoxybenzoyl-beta-bromacrylate (Cytembena) on HeLa cell kinetics. Cancer Res. 1982;42(8):3193–5.PubMed Ronot X, Adolphe M, Kuch D, Jaffray P, Lechat P, Deysson G. Effect of sodium cis-beta-4-methoxybenzoyl-beta-bromacrylate (Cytembena) on HeLa cell kinetics. Cancer Res. 1982;42(8):3193–5.PubMed
23.
go back to reference Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci. 1992;102(Pt 3):401–16.PubMed Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci. 1992;102(Pt 3):401–16.PubMed
29.
go back to reference Chierico L, Joseph AS, Lewis AL, Battaglia G. Live cell imaging of membrane/cytoskeleton interactions and membrane topology. Scientific Rep. 2014;4:6056. doi:10.1038/srep06056.CrossRef Chierico L, Joseph AS, Lewis AL, Battaglia G. Live cell imaging of membrane/cytoskeleton interactions and membrane topology. Scientific Rep. 2014;4:6056. doi:10.​1038/​srep06056.CrossRef
30.
go back to reference Chang JS, Kim SK, Kwon TK, Bae SS, Min DS, Lee YH, et al. Pleckstrin homology domains of phospholipase C-gamma1 directly interact with beta-tubulin for activation of phospholipase C-gamma1 and reciprocal modulation of beta-tubulin function in microtubule assembly. J Biol Chem. 2005;280(8):6897–905. doi:10.1074/jbc.M406350200.CrossRefPubMed Chang JS, Kim SK, Kwon TK, Bae SS, Min DS, Lee YH, et al. Pleckstrin homology domains of phospholipase C-gamma1 directly interact with beta-tubulin for activation of phospholipase C-gamma1 and reciprocal modulation of beta-tubulin function in microtubule assembly. J Biol Chem. 2005;280(8):6897–905. doi:10.​1074/​jbc.​M406350200.CrossRefPubMed
31.
go back to reference Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, et al. The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry. 1995;34(49):16228–34.CrossRefPubMed Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, et al. The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry. 1995;34(49):16228–34.CrossRefPubMed
32.
go back to reference Arabshahi HJ, van Rensburg M, Pilkington LI, Jeon CY, Song M, Gridel L-M, et al. A synthesis, in silico, in vitro and in vivo study of thieno[2,3-b]pyridine anticancer analogues. Medchemcomm. 2015;6(11):1987–97. doi:10.1039/C5MD00245A.CrossRef Arabshahi HJ, van Rensburg M, Pilkington LI, Jeon CY, Song M, Gridel L-M, et al. A synthesis, in silico, in vitro and in vivo study of thieno[2,3-b]pyridine anticancer analogues. Medchemcomm. 2015;6(11):1987–97. doi:10.​1039/​C5MD00245A.CrossRef
Metadata
Title
Evidence that phospholipase C is involved in the antitumour action of NSC768313, a new thieno[2,3-b]pyridine derivative
Authors
Jóhannes Reynisson
Jagdish K. Jaiswal
David Barker
Stacey A. N. D’mello
William A. Denny
Bruce C. Baguley
Euphemia Y. Leung
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2016
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-016-0293-6

Other articles of this Issue 1/2016

Cancer Cell International 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine