Skip to main content
Top
Published in: Brain Structure and Function 2/2012

01-04-2012 | Original Article

Evidence for structural and functional changes of subplate neurons in developing rat barrel cortex

Authors: Chun-Chieh Liao, Li-Jen Lee

Published in: Brain Structure and Function | Issue 2/2012

Login to get access

Abstract

In the developing sensory cortex, the subplate could serve as a transient relay station between the thalamus and cortical plate and assists the formation of thalamocortical projection. While the thalamus-layer IV connection is formed, the thalamic activation of subplate is diminished. In the present study, we aimed to explore the mechanism which may attribute to the decline of subplate activity. To resolve this issue, the developmental changes of subplate neurons (SPns) in rat somatosensory cortex were examined during the first two postnatal weeks which covers the stages prior and subsequent to the establishment of thalamocortical connection. During development, more SPns exhibited regular-spiking firing pattern and the membrane properties of SPns displayed a continual trend of maturation. In the meantime, the excitability of SPns decreased as revealed by increasing rheobase and rightwardly shifted frequency–current curves. On the other hand, increasing paired-pulse ratio and slowing MK-801 blocking rate were noted during development, implying the reduction of presynaptic transmitter release. Morphologically, the size of SPn soma increased with age while the shape became flat. The total length, branching nodes and segments of dendrites increased significantly during the first week. However, after peaking around day 10, these values decreased, implying a pruning process. Our findings here propose that the reduction of neuronal excitability, synaptic transmission and dendritic complexity may attribute to the decline of functional connectivity between thalamus and subplate and reduction of subplate activity while the thalamocortical pathway is established.
Literature
go back to reference Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41(2–3):365–379PubMedCrossRef Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41(2–3):365–379PubMedCrossRef
go back to reference Al-Ghoul WM, Miller MW (1989) Transient expression of Alz-50 immunoreactivity in developing rat neocortex: a marker for naturally occuring neuronal death? Brain Res 481(2):361–367PubMedCrossRef Al-Ghoul WM, Miller MW (1989) Transient expression of Alz-50 immunoreactivity in developing rat neocortex: a marker for naturally occuring neuronal death? Brain Res 481(2):361–367PubMedCrossRef
go back to reference Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: It’s role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17(1):185–218PubMedCrossRef Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: It’s role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17(1):185–218PubMedCrossRef
go back to reference Arias MS, Baratta J, Yu J, Robertson RT (2002) Absence of selectivity in the loss of neurons from the developing cortical subplate of the rat. Dev Brain Res 139(2):331–335CrossRef Arias MS, Baratta J, Yu J, Robertson RT (2002) Absence of selectivity in the loss of neurons from the developing cortical subplate of the rat. Dev Brain Res 139(2):331–335CrossRef
go back to reference Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107(1):48–62PubMedCrossRef Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107(1):48–62PubMedCrossRef
go back to reference Cameron WE, Núñez-Abades PA (2000) Physiological changes accompanying anatomical remodeling of mammalian motoneurons during postnatal development. Brain Res Bull 53(5):523–527PubMedCrossRef Cameron WE, Núñez-Abades PA (2000) Physiological changes accompanying anatomical remodeling of mammalian motoneurons during postnatal development. Brain Res Bull 53(5):523–527PubMedCrossRef
go back to reference Chun JJM, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282(4):555–569PubMedCrossRef Chun JJM, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282(4):555–569PubMedCrossRef
go back to reference Clancy B, Cauller LJ (1999) Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. J Comp Neurol 407(2):275–286PubMedCrossRef Clancy B, Cauller LJ (1999) Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. J Comp Neurol 407(2):275–286PubMedCrossRef
go back to reference Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11(1):118–126PubMedCrossRef Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11(1):118–126PubMedCrossRef
go back to reference Daw MI, Scott HL, Isaac JTR (2007) Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles. Mol Cell Neurosci 34(4):493–502PubMedCrossRef Daw MI, Scott HL, Isaac JTR (2007) Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles. Mol Cell Neurosci 34(4):493–502PubMedCrossRef
go back to reference De Carlos J, O’Leary D (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12(4):1194–1211PubMed De Carlos J, O’Leary D (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12(4):1194–1211PubMed
go back to reference Dupont E, Hanganu IL, Kilb W, Hirsch S, Luhmann HJ (2006) Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439(7072):79–83PubMedCrossRef Dupont E, Hanganu IL, Kilb W, Hirsch S, Luhmann HJ (2006) Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439(7072):79–83PubMedCrossRef
go back to reference Erzurumlu RS, Jhaveri S (1992) Emergence of connectivity in the embryonic rat parietal cortex. Cereb Cortex 2(4):336–352PubMedCrossRef Erzurumlu RS, Jhaveri S (1992) Emergence of connectivity in the embryonic rat parietal cortex. Cereb Cortex 2(4):336–352PubMedCrossRef
go back to reference Feldman DE, Nicoll RA, Malenka RC (1999) Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J Neurobiol 41(1):92–101PubMedCrossRef Feldman DE, Nicoll RA, Malenka RC (1999) Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J Neurobiol 41(1):92–101PubMedCrossRef
go back to reference Friauf E, McConnell S, Shatz C (1990) Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J Neurosci 10(8):2601–2613PubMed Friauf E, McConnell S, Shatz C (1990) Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J Neurosci 10(8):2601–2613PubMed
go back to reference Fricker D, Verheugen JAH, Miles R (1999) Cell-attached measurements of the firing threshold of rat hippocampal neurones. J Physiol 517(3):791–804PubMedCrossRef Fricker D, Verheugen JAH, Miles R (1999) Cell-attached measurements of the firing threshold of rat hippocampal neurones. J Physiol 517(3):791–804PubMedCrossRef
go back to reference Gall D, Roussel C, Susa I, D’Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurmans S, Schiffmann SN (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23(28):9320–9327PubMed Gall D, Roussel C, Susa I, D’Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurmans S, Schiffmann SN (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23(28):9320–9327PubMed
go back to reference Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102(4):2161–2175PubMedCrossRef Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102(4):2161–2175PubMedCrossRef
go back to reference Guan D, Horton LR, Armstrong WE, Foehring RC (2011) Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons. J Neurophysiol 105(6):2976–2988PubMedCrossRef Guan D, Horton LR, Armstrong WE, Foehring RC (2011) Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons. J Neurophysiol 105(6):2976–2988PubMedCrossRef
go back to reference Hanganu IL, Kilb W, Luhmann HJ (2001) Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex. Cereb Cortex 11(5):400–410PubMedCrossRef Hanganu IL, Kilb W, Luhmann HJ (2001) Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex. Cereb Cortex 11(5):400–410PubMedCrossRef
go back to reference Hanganu IL, Kilb W, Luhmann HJ (2002) Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci 22(16):7165–7176PubMed Hanganu IL, Kilb W, Luhmann HJ (2002) Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci 22(16):7165–7176PubMed
go back to reference Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature 366(6455):569–572PubMedCrossRef Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature 366(6455):569–572PubMedCrossRef
go back to reference Heuer H, Christ S, Friedrichsen S, Brauer D, Winckler M, Bauer K, Raivich G (2003) Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience 119(1):43–52PubMedCrossRef Heuer H, Christ S, Friedrichsen S, Brauer D, Winckler M, Bauer K, Raivich G (2003) Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience 119(1):43–52PubMedCrossRef
go back to reference Higashi S, Hioki K, Kurotani T, Kasim N, Molnar Z (2005) Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci 25(6):1395–1406PubMedCrossRef Higashi S, Hioki K, Kurotani T, Kasim N, Molnar Z (2005) Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci 25(6):1395–1406PubMedCrossRef
go back to reference Hirsch S, Luhmann HJ (2008) Pathway-specificity in N-methyl-d-aspartate receptor-mediated synaptic inputs onto subplate neurons. Neuroscience 153(4):1092–1102PubMedCrossRef Hirsch S, Luhmann HJ (2008) Pathway-specificity in N-methyl-d-aspartate receptor-mediated synaptic inputs onto subplate neurons. Neuroscience 153(4):1092–1102PubMedCrossRef
go back to reference Hoerder-Suabedissen A, Wang WZ, Lee S, Davies KE, Goffinet AM, Rakic S, Parnavelas J, Reim K, Nicolic M, Paulsen O, Molnar Z (2009) Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. Cereb Cortex 19(8):1738–1750PubMedCrossRef Hoerder-Suabedissen A, Wang WZ, Lee S, Davies KE, Goffinet AM, Rakic S, Parnavelas J, Reim K, Nicolic M, Paulsen O, Molnar Z (2009) Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. Cereb Cortex 19(8):1738–1750PubMedCrossRef
go back to reference Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588(17):3187–3200PubMedCrossRef Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588(17):3187–3200PubMedCrossRef
go back to reference Kanold PO (2004) Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport 15(14):2149–2153PubMedCrossRef Kanold PO (2004) Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport 15(14):2149–2153PubMedCrossRef
go back to reference Kanold PO, Luhmann HJ (2010) The subplate and early cortical circuits. Annu Rev Neurosci 33(1):23–48PubMedCrossRef Kanold PO, Luhmann HJ (2010) The subplate and early cortical circuits. Annu Rev Neurosci 33(1):23–48PubMedCrossRef
go back to reference Komendantov AO, Ascoli GA (2009) Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. J Neurophysiol 101(4):1847–1866PubMedCrossRef Komendantov AO, Ascoli GA (2009) Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. J Neurophysiol 101(4):1847–1866PubMedCrossRef
go back to reference Kostovic I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9(2):219–242PubMedCrossRef Kostovic I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9(2):219–242PubMedCrossRef
go back to reference Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297(3):441–470PubMedCrossRef Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297(3):441–470PubMedCrossRef
go back to reference Lee LJ, Iwasato T, Itohara S, Erzurumlu RS (2005) Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol 485(4):280–292PubMedCrossRef Lee LJ, Iwasato T, Itohara S, Erzurumlu RS (2005) Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol 485(4):280–292PubMedCrossRef
go back to reference Lo F-S, Erzurumlu RS (2011) Peripheral nerve damage does not alter release properties of developing central trigeminal afferents. J Neurophysiol 105(4):1681–1688PubMedCrossRef Lo F-S, Erzurumlu RS (2011) Peripheral nerve damage does not alter release properties of developing central trigeminal afferents. J Neurophysiol 105(4):1681–1688PubMedCrossRef
go back to reference Lu H-C, Butts DA, Kaeser PS, She W-C, Janz R, Crair MC (2006) Role of efficient neurotransmitter release in barrel map development. J Neurosci 26(10):2692–2703PubMedCrossRef Lu H-C, Butts DA, Kaeser PS, She W-C, Janz R, Crair MC (2006) Role of efficient neurotransmitter release in barrel map development. J Neurosci 26(10):2692–2703PubMedCrossRef
go back to reference Luhmann HJ, Hanganu I, Kilb W (2003) Cellular physiology of the neonatal rat cerebral cortex. Brain Res Bull 60(4):345–353PubMedCrossRef Luhmann HJ, Hanganu I, Kilb W (2003) Cellular physiology of the neonatal rat cerebral cortex. Brain Res Bull 60(4):345–353PubMedCrossRef
go back to reference Luskin M, Shatz C (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5(4):1062–1075PubMed Luskin M, Shatz C (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5(4):1062–1075PubMed
go back to reference Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366PubMedCrossRef Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366PubMedCrossRef
go back to reference McCormick DA, Prince DA (1987) Postnatal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J Physiol 393(1):743–762PubMed McCormick DA, Prince DA (1987) Postnatal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J Physiol 393(1):743–762PubMed
go back to reference Misonou H, Mohapatra DP, Trimmer JS (2005) Kv2.1: a voltage-gated k+ channel critical to dynamic control of neuronal excitability. Neurotoxicology 26(5):743–752PubMedCrossRef Misonou H, Mohapatra DP, Trimmer JS (2005) Kv2.1: a voltage-gated k+ channel critical to dynamic control of neuronal excitability. Neurotoxicology 26(5):743–752PubMedCrossRef
go back to reference Mohapatra DP, Misonou H, Pan SJ, Held JE, Surmeier DJ, Trimmer JS (2009) Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the KV2.1 potassium channel. Channels 3(1):46–56PubMedCrossRef Mohapatra DP, Misonou H, Pan SJ, Held JE, Surmeier DJ, Trimmer JS (2009) Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the KV2.1 potassium channel. Channels 3(1):46–56PubMedCrossRef
go back to reference Mouchet P, Yelnik J (2004) A biophysical model of neuronal dendrites’ integrative properties: relations to morphological data. Acta Biotheor 52(4):313–322PubMedCrossRef Mouchet P, Yelnik J (2004) A biophysical model of neuronal dendrites’ integrative properties: relations to morphological data. Acta Biotheor 52(4):313–322PubMedCrossRef
go back to reference Myakhar O, Unichenko P, Kirischuk S (2011) GABAergic projections from the subplate to Cajal–Retzius cells in the neocortex. Neuroreport 22(11):525–529PubMedCrossRef Myakhar O, Unichenko P, Kirischuk S (2011) GABAergic projections from the subplate to Cajal–Retzius cells in the neocortex. Neuroreport 22(11):525–529PubMedCrossRef
go back to reference Nataraj K, Le Roux N, Nahmani M, Lefort S, Turrigiano G (2010) Visual deprivation suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity. Neuron 68(4):750–762PubMedCrossRef Nataraj K, Le Roux N, Nahmani M, Lefort S, Turrigiano G (2010) Visual deprivation suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity. Neuron 68(4):750–762PubMedCrossRef
go back to reference Oswald A-MM, Reyes AD (2008) Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J Neurophysiol 99(6):2998–3008PubMedCrossRef Oswald A-MM, Reyes AD (2008) Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J Neurophysiol 99(6):2998–3008PubMedCrossRef
go back to reference Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 30(1):399–423PubMedCrossRef Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 30(1):399–423PubMedCrossRef
go back to reference Price DJ, Aslam S, Tasker L, Gillies K (1997) Fates of the earliest generated cells in the developing murine neocortex. J Comp Neurol 377(3):414–422PubMedCrossRef Price DJ, Aslam S, Tasker L, Gillies K (1997) Fates of the earliest generated cells in the developing murine neocortex. J Comp Neurol 377(3):414–422PubMedCrossRef
go back to reference Qu J, Myhr KL (2011) The morphology and intrinsic excitability of developing mouse retinal ganglion cells. PLoS One 6(7):e21777PubMedCrossRef Qu J, Myhr KL (2011) The morphology and intrinsic excitability of developing mouse retinal ganglion cells. PLoS One 6(7):e21777PubMedCrossRef
go back to reference Rebsam A, Seif I, Gaspar P (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase A knock-out mice. J Neurosci 22(19):8541–8552PubMed Rebsam A, Seif I, Gaspar P (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase A knock-out mice. J Neurosci 22(19):8541–8552PubMed
go back to reference Robertson RT, Annis CM, Baratta J, Haraldson S, Ingeman J, Kageyama GH, Kimm E, Yu J (2000) Do subplate neurons comprise a transient population of cells in developing neocortex of rats? J Comp Neurol 426(4):632–650PubMedCrossRef Robertson RT, Annis CM, Baratta J, Haraldson S, Ingeman J, Kageyama GH, Kimm E, Yu J (2000) Do subplate neurons comprise a transient population of cells in developing neocortex of rats? J Comp Neurol 426(4):632–650PubMedCrossRef
go back to reference Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480PubMedCrossRef Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480PubMedCrossRef
go back to reference Spigelman I, Zhang L, Carlen PL (1992) Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: membrane excitability and K+ currents. J Neurophysiol 68(1):55–69PubMed Spigelman I, Zhang L, Carlen PL (1992) Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: membrane excitability and K+ currents. J Neurophysiol 68(1):55–69PubMed
go back to reference Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221PubMedCrossRef Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221PubMedCrossRef
go back to reference Stern JE, Armstrong WE (1998) Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. J Neurosci 18(3):841–853PubMed Stern JE, Armstrong WE (1998) Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. J Neurosci 18(3):841–853PubMed
go back to reference Surges R, Freiman TM, Feuerstein TJ (2004) Input resistance is voltage dependent due to activation of Ih channels in rat CA1 pyramidal cells. J Neurosci Res 76(4):475–480PubMedCrossRef Surges R, Freiman TM, Feuerstein TJ (2004) Input resistance is voltage dependent due to activation of Ih channels in rat CA1 pyramidal cells. J Neurosci Res 76(4):475–480PubMedCrossRef
go back to reference Surges R, Brewster AL, Bender RA, Beck H, Feuerstein TJ, Baram TZ (2006) Regulated expression of HCN channels and cAMP levels shape the properties of the h current in developing rat hippocampus. Eur J Neurosci 24(1):94–104PubMedCrossRef Surges R, Brewster AL, Bender RA, Beck H, Feuerstein TJ, Baram TZ (2006) Regulated expression of HCN channels and cAMP levels shape the properties of the h current in developing rat hippocampus. Eur J Neurosci 24(1):94–104PubMedCrossRef
go back to reference Torres-Reveron J, Friedlander MJ (2007) Properties of persistent postnatal cortical subplate neurons. J Neurosci 27(37):9962–9974PubMedCrossRef Torres-Reveron J, Friedlander MJ (2007) Properties of persistent postnatal cortical subplate neurons. J Neurosci 27(37):9962–9974PubMedCrossRef
go back to reference Valverde F, Facal-valverde MV, Santacana M, Heredia M (1989) Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated Golgi and autoradiographic study. J Comp Neurol 290(1):118–140PubMedCrossRef Valverde F, Facal-valverde MV, Santacana M, Heredia M (1989) Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated Golgi and autoradiographic study. J Comp Neurol 290(1):118–140PubMedCrossRef
go back to reference Valverde F, Lopez-Mascaraque L, Santacana M, De Carlos J (1995) Persistence of early-generated neurons in the rodent subplate: assessment of cell death in neocortex during the early postnatal period. J Neurosci 15(7):5014–5024PubMed Valverde F, Lopez-Mascaraque L, Santacana M, De Carlos J (1995) Persistence of early-generated neurons in the rodent subplate: assessment of cell death in neocortex during the early postnatal period. J Neurosci 15(7):5014–5024PubMed
go back to reference Vasilyev DV, Barish ME (2002) Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons. J Neurosci 22(20):8992–9004PubMed Vasilyev DV, Barish ME (2002) Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons. J Neurosci 22(20):8992–9004PubMed
go back to reference Vitalis T, Parnavelas JG (2003) The role of serotonin in early cortical development. Dev Neurosci 25(2–4):245–256PubMedCrossRef Vitalis T, Parnavelas JG (2003) The role of serotonin in early cortical development. Dev Neurosci 25(2–4):245–256PubMedCrossRef
go back to reference Wang WZ, Oeschger FM, Montiel JF, García-Moreno F, Hoerder-Suabedissen A, Krubitzer L, Ek CJ, Saunders NR, Reim K, Villalón A, Molnár Z (2011) Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals. Cereb Cortex. doi:10.1093/cercor/bhq1278 Wang WZ, Oeschger FM, Montiel JF, García-Moreno F, Hoerder-Suabedissen A, Krubitzer L, Ek CJ, Saunders NR, Reim K, Villalón A, Molnár Z (2011) Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals. Cereb Cortex. doi:10.​1093/​cercor/​bhq1278
go back to reference Warren RA, Jones EG (1997) Maturation of neuronal form and function in a mouse thalamo-cortical circuit. J Neurosci 17(1):277–295PubMed Warren RA, Jones EG (1997) Maturation of neuronal form and function in a mouse thalamo-cortical circuit. J Neurosci 17(1):277–295PubMed
go back to reference Wong ROL, Ghosh A (2002) Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3(10):803–812PubMedCrossRef Wong ROL, Ghosh A (2002) Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3(10):803–812PubMedCrossRef
go back to reference Woo TU, Beale JM, Finlay BL (1991) Dual fate of subplate neurons in a rodent. Cereb Cortex 1(5):433–443PubMedCrossRef Woo TU, Beale JM, Finlay BL (1991) Dual fate of subplate neurons in a rodent. Cereb Cortex 1(5):433–443PubMedCrossRef
go back to reference Zhang Z-W (2004) Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. J Neurophysiol 91(3):1171–1182PubMedCrossRef Zhang Z-W (2004) Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. J Neurophysiol 91(3):1171–1182PubMedCrossRef
go back to reference Zhao C, Kao JPY, Kanold PO (2009) Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. J Neurosci 29(49):15479–15488PubMedCrossRef Zhao C, Kao JPY, Kanold PO (2009) Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. J Neurosci 29(49):15479–15488PubMedCrossRef
Metadata
Title
Evidence for structural and functional changes of subplate neurons in developing rat barrel cortex
Authors
Chun-Chieh Liao
Li-Jen Lee
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 2/2012
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0354-5

Other articles of this Issue 2/2012

Brain Structure and Function 2/2012 Go to the issue