Skip to main content
Top
Published in: European Spine Journal 8/2018

01-08-2018 | Review

Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review

Authors: Saeed Soleyman-Jahi, Ali Yousefian, Radin Maheronnaghsh, Farhad Shokraneh, Shayan Abdollah Zadegan, Akbar Soltani, Seyed Mostafa Hosseini, Alexander R. Vaccaro, Vafa Rahimi-Movaghar

Published in: European Spine Journal | Issue 8/2018

Login to get access

Abstract

Purpose

Spinal cord injury (SCI) results in accelerated bone mineral density (BMD) loss and disorganization of trabecular bone architecture. The mechanisms underlying post-SCI osteoporosis are complex and different from other types of osteoporosis. Findings of studies investigating efficacy of pharmacological or rehabilitative interventions in SCI-related osteoporosis are controversial. The aim of this study was to review the literature pertaining to prevention and evidence-based treatments of SCI-related osteoporosis.

Methods

In this systematic review, MEDLINE, EMBASE, PubMed, and the Cochrane Library were used to identify papers from 1946 to December 31, 2015. The search strategy involved the following keywords: spinal cord injury, osteoporosis, and bone loss.

Results

Finally, 56 studies were included according to the inclusion criteria. Only 16 randomized controlled trials (involving 368 patients) were found. We found following evidences for effectiveness of bisphosphonates in prevention of BMD loss in acute SCI: very low-quality evidence for clodronate and etidronate, low-quality evidence for alendronate, and moderate-quality evidence for zoledronic acid. Low-quality evidence showed no effectiveness for tiludronate. In chronic SCI cases, we found low-quality evidence for effectiveness of vitamin D3 analogs combined with 1-alpha vitamin D2. However, low-quality inconsistent evidence exists for alendronate. For non-pharmacologic interventions, very low-quality evidence exists for effectiveness of standing with or without treadmill walking in acute SCI. Other low-quality evidences indicated that electrical stimulation, tilt-table standing, and ultrasound provide no significant effects. Very low-quality evidence did not show any benefit for low-intensity (3 days per week) cycling with functional electrical stimulator in chronic SCI.

Conclusions

No recommendations can be made from this review, regarding overall low quality of evidence as a result of high risk of bias, low sample size in most of the studies, and notable heterogeneity in type of intervention, outcome measurement, and duration of treatment. Therefore, future high-quality RCT studies with higher sample sizes and more homogeneity are strongly recommended to provide high-quality evidence and make applicable recommendations for prevention and treatment of SCI-related bone loss.
Appendix
Available only for authorised users
Literature
2.
go back to reference Rahimi-Movaghar V, Sayyah MK, Akbari H, Khorramirouz R, Rasouli MR, Moradi-Lakeh M, Shokraneh F, Vaccaro AR (2013) Epidemiology of traumatic spinal cord injury in developing countries: a systematic review. Neuroepidemiology 41:65–85. doi:10.1159/000350710 CrossRefPubMed Rahimi-Movaghar V, Sayyah MK, Akbari H, Khorramirouz R, Rasouli MR, Moradi-Lakeh M, Shokraneh F, Vaccaro AR (2013) Epidemiology of traumatic spinal cord injury in developing countries: a systematic review. Neuroepidemiology 41:65–85. doi:10.​1159/​000350710 CrossRefPubMed
3.
go back to reference Jazayeri SB, Ataeepour M, Rabiee H, Motevalian SA, Saadat S, Vaccaro AR, Rahimi-Movaghar V (2015) Prevalence of spinal cord injury in Iran: a 3-source capture-recapture study. Neuroepidemiology 45:28–33. doi:10.1159/000435785 CrossRefPubMed Jazayeri SB, Ataeepour M, Rabiee H, Motevalian SA, Saadat S, Vaccaro AR, Rahimi-Movaghar V (2015) Prevalence of spinal cord injury in Iran: a 3-source capture-recapture study. Neuroepidemiology 45:28–33. doi:10.​1159/​000435785 CrossRefPubMed
4.
go back to reference Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ (1998) Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 77:28–35CrossRefPubMed Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ (1998) Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 77:28–35CrossRefPubMed
5.
6.
go back to reference Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A (1995) Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33:669–673. doi:10.1038/sc.1995.140 PubMedCrossRef Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A (1995) Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33:669–673. doi:10.​1038/​sc.​1995.​140 PubMedCrossRef
9.
go back to reference Keating JF, Kerr M, Delargy M (1992) Minimal trauma causing fractures in patients with spinal cord injury. Disabil Rehabil 14:108–109CrossRefPubMed Keating JF, Kerr M, Delargy M (1992) Minimal trauma causing fractures in patients with spinal cord injury. Disabil Rehabil 14:108–109CrossRefPubMed
10.
go back to reference Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392. doi:10.1007/s00198-008-0671-6 CrossRefPubMed Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392. doi:10.​1007/​s00198-008-0671-6 CrossRefPubMed
12.
13.
go back to reference Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189. doi:10.1007/s00198-003-1529-6 CrossRefPubMed Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189. doi:10.​1007/​s00198-003-1529-6 CrossRefPubMed
14.
go back to reference Garland DE, Adkins RH, Kushwaha V, Stewart C (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27:202–206CrossRefPubMed Garland DE, Adkins RH, Kushwaha V, Stewart C (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27:202–206CrossRefPubMed
17.
go back to reference Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C, Schwartz E (2005) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42:305–313CrossRefPubMed Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C, Schwartz E (2005) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42:305–313CrossRefPubMed
18.
go back to reference Bubbear JS, Gall A, Middleton FR, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22:271–279. doi:10.1007/s00198-010-1221-6 CrossRefPubMed Bubbear JS, Gall A, Middleton FR, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22:271–279. doi:10.​1007/​s00198-010-1221-6 CrossRefPubMed
19.
go back to reference Chappard D, Minaire P, Privat C, Berard E, Mendoza-Sarmiento J, Tournebise H, Basle MF, Audran M, Rebel A, Picot C et al (1995) Effects of tiludronate on bone loss in paraplegic patients. J Bone Miner Res 10:112–118. doi:10.1002/jbmr.5650100116 CrossRefPubMed Chappard D, Minaire P, Privat C, Berard E, Mendoza-Sarmiento J, Tournebise H, Basle MF, Audran M, Rebel A, Picot C et al (1995) Effects of tiludronate on bone loss in paraplegic patients. J Bone Miner Res 10:112–118. doi:10.​1002/​jbmr.​5650100116 CrossRefPubMed
20.
go back to reference Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, Heard A, Reilly P, Marshall K (2007) Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92:1385–1390. doi:10.1210/jc.2006-2013 CrossRefPubMed Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, Heard A, Reilly P, Marshall K (2007) Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92:1385–1390. doi:10.​1210/​jc.​2006-2013 CrossRefPubMed
21.
go back to reference Minaire P, Berard E, Meunier PJ, Edouard C, Goedert G, Pilonchery G (1981) Effects of disodium dichloromethylene diphosphonate on bone loss in paraplegic patients. J Clin Invest 68:1086–1092CrossRefPubMedPubMedCentral Minaire P, Berard E, Meunier PJ, Edouard C, Goedert G, Pilonchery G (1981) Effects of disodium dichloromethylene diphosphonate on bone loss in paraplegic patients. J Clin Invest 68:1086–1092CrossRefPubMedPubMedCentral
22.
go back to reference Pearson EG, Nance PW, Leslie WD, Ludwig S (1997) Cyclical etidronate: its effect on bone density in patients with acute spinal cord injury. Arch Phys Med Rehabil 78:269–272CrossRefPubMed Pearson EG, Nance PW, Leslie WD, Ludwig S (1997) Cyclical etidronate: its effect on bone density in patients with acute spinal cord injury. Arch Phys Med Rehabil 78:269–272CrossRefPubMed
23.
go back to reference Shapiro J, Smith B, Beck T, Ballard P, Dapthary M, BrintzenhofeSzoc K, Caminis J (2007) Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 80:316–322. doi:10.1007/s00223-007-9012-6 CrossRefPubMed Shapiro J, Smith B, Beck T, Ballard P, Dapthary M, BrintzenhofeSzoc K, Caminis J (2007) Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 80:316–322. doi:10.​1007/​s00223-007-9012-6 CrossRefPubMed
24.
go back to reference Bauman WA, Spungen AM, Morrison N, Zhang RL, Schwartz E (2005) Effect of a vitamin D analog on leg bone mineral density in patients with chronic spinal cord injury. J Rehabil Res Dev 42:625–634CrossRefPubMed Bauman WA, Spungen AM, Morrison N, Zhang RL, Schwartz E (2005) Effect of a vitamin D analog on leg bone mineral density in patients with chronic spinal cord injury. J Rehabil Res Dev 42:625–634CrossRefPubMed
26.
go back to reference Nance PW, Schryvers O, Leslie W, Ludwig S, Krahn J, Uebelhart D (1999) Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil 80:243–251CrossRefPubMed Nance PW, Schryvers O, Leslie W, Ludwig S, Krahn J, Uebelhart D (1999) Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil 80:243–251CrossRefPubMed
27.
go back to reference Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, Zach GA, Lippuner K (2004) Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 19:1067–1074. doi:10.1359/JBMR.040313 CrossRefPubMed Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, Zach GA, Lippuner K (2004) Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 19:1067–1074. doi:10.​1359/​JBMR.​040313 CrossRefPubMed
29.
go back to reference Arija-Blazquez A, Ceruelo-Abajo S, Diaz-Merino MS, Godino-Duran JA, Martinez-Dhier L, Florensa-Vila J (2013) Time-course response in serum markers of bone turnover to a single-bout of electrical stimulation in patients with recent spinal cord injury. Eur J Appl Physiol 113:89–97. doi:10.1007/s00421-012-2416-7 CrossRefPubMed Arija-Blazquez A, Ceruelo-Abajo S, Diaz-Merino MS, Godino-Duran JA, Martinez-Dhier L, Florensa-Vila J (2013) Time-course response in serum markers of bone turnover to a single-bout of electrical stimulation in patients with recent spinal cord injury. Eur J Appl Physiol 113:89–97. doi:10.​1007/​s00421-012-2416-7 CrossRefPubMed
30.
go back to reference Ashe MC, Eng JJ, Krassioukov AV, Warburton DE, Hung C, Tawashy A (2010) Response to functional electrical stimulation cycling in women with spinal cord injuries using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography: a case series. J Spinal Cord Med 33:68–72CrossRefPubMedPubMedCentral Ashe MC, Eng JJ, Krassioukov AV, Warburton DE, Hung C, Tawashy A (2010) Response to functional electrical stimulation cycling in women with spinal cord injuries using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography: a case series. J Spinal Cord Med 33:68–72CrossRefPubMedPubMedCentral
32.
go back to reference BeDell KK, Scremin AM, Perell KL, Kunkel CF (1996) Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 75:29–34CrossRefPubMed BeDell KK, Scremin AM, Perell KL, Kunkel CF (1996) Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 75:29–34CrossRefPubMed
33.
go back to reference Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B (2000) Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil 81:1090–1098CrossRefPubMed Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B (2000) Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil 81:1090–1098CrossRefPubMed
34.
go back to reference Ben M, Harvey L, Denis S, Glinsky J, Goehl G, Chee S, Herbert RD (2005) Does 12 weeks of regular standing prevent loss of ankle mobility and bone mineral density in people with recent spinal cord injuries? Aust J Physiother 51:251–256CrossRefPubMed Ben M, Harvey L, Denis S, Glinsky J, Goehl G, Chee S, Herbert RD (2005) Does 12 weeks of regular standing prevent loss of ankle mobility and bone mineral density in people with recent spinal cord injuries? Aust J Physiother 51:251–256CrossRefPubMed
35.
go back to reference Carvalho DC, Garlipp CR, Bottini PV, Afaz SH, Moda MA, Cliquet A Jr (2006) Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects. Braz J Med Biol Res 39:1357–1363CrossRefPubMed Carvalho DC, Garlipp CR, Bottini PV, Afaz SH, Moda MA, Cliquet A Jr (2006) Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects. Braz J Med Biol Res 39:1357–1363CrossRefPubMed
37.
38.
go back to reference Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, Marshall R (2007) Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 45:78–85. doi:10.1038/sj.sc.3101929 CrossRefPubMed Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, Marshall R (2007) Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 45:78–85. doi:10.​1038/​sj.​sc.​3101929 CrossRefPubMed
39.
go back to reference de Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stussi E (1999) Changes of tibia bone properties after spinal cord injury: effects of early intervention. Arch Phys Med Rehabil 80:214–220CrossRefPubMed de Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stussi E (1999) Changes of tibia bone properties after spinal cord injury: effects of early intervention. Arch Phys Med Rehabil 80:214–220CrossRefPubMed
42.
go back to reference Dudley-Javoroski S, Shields RK (2008) Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury. J Musculoskelet Neuronal Interact 8:227–238PubMedPubMedCentral Dudley-Javoroski S, Shields RK (2008) Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury. J Musculoskelet Neuronal Interact 8:227–238PubMedPubMedCentral
45.
go back to reference Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stussi E (2003) Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 33:412–419CrossRefPubMed Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stussi E (2003) Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 33:412–419CrossRefPubMed
47.
go back to reference Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Eser P (2009) Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study. J Rehabil Med 41:282–285. doi:10.2340/16501977-0321 CrossRefPubMed Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Eser P (2009) Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study. J Rehabil Med 41:282–285. doi:10.​2340/​16501977-0321 CrossRefPubMed
48.
go back to reference Giangregorio LM, Hicks AL, Webber CE, Phillips SM, Craven BC, Bugaresti JM, McCartney N (2005) Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 43:649–657. doi:10.1038/sj.sc.3101774 CrossRefPubMed Giangregorio LM, Hicks AL, Webber CE, Phillips SM, Craven BC, Bugaresti JM, McCartney N (2005) Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 43:649–657. doi:10.​1038/​sj.​sc.​3101774 CrossRefPubMed
49.
go back to reference Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, McCartney N (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31:283–291. doi:10.1139/h05-036 CrossRefPubMed Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, McCartney N (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31:283–291. doi:10.​1139/​h05-036 CrossRefPubMed
50.
go back to reference Goktepe AS, Tugcu I, Yilmaz B, Alaca R, Gunduz S (2008) Does standing protect bone density in patients with chronic spinal cord injury? J Spinal Cord Med 31:197–201CrossRefPubMedPubMedCentral Goktepe AS, Tugcu I, Yilmaz B, Alaca R, Gunduz S (2008) Does standing protect bone density in patients with chronic spinal cord injury? J Spinal Cord Med 31:197–201CrossRefPubMedPubMedCentral
53.
go back to reference Hangartner TN, Rodgers MM, Glaser RM, Barre PS (1994) Tibial bone density loss in spinal cord injured patients: effects of FES exercise. J Rehabil Res Dev 31:50–61PubMed Hangartner TN, Rodgers MM, Glaser RM, Barre PS (1994) Tibial bone density loss in spinal cord injured patients: effects of FES exercise. J Rehabil Res Dev 31:50–61PubMed
54.
55.
go back to reference Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S (1993) Effect of “standing” on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil 74:73–78PubMed Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S (1993) Effect of “standing” on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil 74:73–78PubMed
56.
go back to reference Lai CH, Chang WH, Chan WP, Peng CW, Shen LK, Chen JJ, Chen SC (2010) Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med 42:150–154. doi:10.2340/16501977-0499 CrossRefPubMed Lai CH, Chang WH, Chan WP, Peng CW, Shen LK, Chen JJ, Chen SC (2010) Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med 42:150–154. doi:10.​2340/​16501977-0499 CrossRefPubMed
57.
go back to reference Leeds EM, Klose KJ, Ganz W, Serafini A, Green BA (1990) Bone mineral density after bicycle ergometry training. Arch Phys Med Rehabil 71:207–209PubMed Leeds EM, Klose KJ, Ganz W, Serafini A, Green BA (1990) Bone mineral density after bicycle ergometry training. Arch Phys Med Rehabil 71:207–209PubMed
58.
go back to reference Melchiorri G, Andreoli A, Padua E, Sorge R, De Lorenzo A (2007) Use of vibration exercise in spinal cord injury patients who regularly practise sport. Funct Neurol 22:151–154PubMed Melchiorri G, Andreoli A, Padua E, Sorge R, De Lorenzo A (2007) Use of vibration exercise in spinal cord injury patients who regularly practise sport. Funct Neurol 22:151–154PubMed
59.
go back to reference Mohr T, Andersen JL, Biering-Sorensen F, Galbo H, Bangsbo J, Wagner A, Kjaer M (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35:1–16CrossRefPubMed Mohr T, Andersen JL, Biering-Sorensen F, Galbo H, Bangsbo J, Wagner A, Kjaer M (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35:1–16CrossRefPubMed
60.
go back to reference Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78:799–803CrossRefPubMed Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78:799–803CrossRefPubMed
62.
go back to reference Pacy PJ, Hesp R, Halliday DA, Katz D, Cameron G, Reeve J (1988) Muscle and bone in paraplegic patients, and the effect of functional electrical stimulation. Clin Sci (Lond) 75:481–487CrossRef Pacy PJ, Hesp R, Halliday DA, Katz D, Cameron G, Reeve J (1988) Muscle and bone in paraplegic patients, and the effect of functional electrical stimulation. Clin Sci (Lond) 75:481–487CrossRef
63.
go back to reference Rodgers MM, Glaser RM, Figoni SF, Hooker SP, Ezenwa BN, Collins SR, Mathews T, Suryaprasad AG, Gupta SC (1991) Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise training. J Rehabil Res Dev 28:19–26CrossRefPubMed Rodgers MM, Glaser RM, Figoni SF, Hooker SP, Ezenwa BN, Collins SR, Mathews T, Suryaprasad AG, Gupta SC (1991) Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise training. J Rehabil Res Dev 28:19–26CrossRefPubMed
67.
go back to reference Thoumie P, Le Claire G, Beillot J, Dassonville J, Chevalier T, Perrouin-Verbe B, Bedoiseau M, Busnel M, Cormerais A, Courtillon A et al (1995) Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: physiological evaluation. Paraplegia 33:654–659. doi:10.1038/sc.1995.137 PubMedCrossRef Thoumie P, Le Claire G, Beillot J, Dassonville J, Chevalier T, Perrouin-Verbe B, Bedoiseau M, Busnel M, Cormerais A, Courtillon A et al (1995) Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: physiological evaluation. Paraplegia 33:654–659. doi:10.​1038/​sc.​1995.​137 PubMedCrossRef
68.
go back to reference Johnston TE, Marino RJ, Oleson CV, Schmidt-Read M, Leiby BE, Sendecki J, Singh H, Modlesky CM (2016) Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord injury: a pilot study. Arch Phys Med Rehabil 97:1413–1422. doi:10.1016/j.apmr.2015.11.014 CrossRefPubMed Johnston TE, Marino RJ, Oleson CV, Schmidt-Read M, Leiby BE, Sendecki J, Singh H, Modlesky CM (2016) Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord injury: a pilot study. Arch Phys Med Rehabil 97:1413–1422. doi:10.​1016/​j.​apmr.​2015.​11.​014 CrossRefPubMed
71.
go back to reference Furlan AD, Malmivaara A, Chou R, Maher CG, Deyo RA, Schoene M, Bronfort G, van Tulder MW, Editorial Board of the Cochrane Back NG (2015) Updated method guideline for systematic reviews in the Cochrane Back and Neck Group. Spine (Phila Pa 1976) 40:1660–1673. doi:10.1097/BRS.0000000000001061 CrossRef Furlan AD, Malmivaara A, Chou R, Maher CG, Deyo RA, Schoene M, Bronfort G, van Tulder MW, Editorial Board of the Cochrane Back NG (2015) Updated method guideline for systematic reviews in the Cochrane Back and Neck Group. Spine (Phila Pa 1976) 40:1660–1673. doi:10.​1097/​BRS.​0000000000001061​ CrossRef
72.
go back to reference Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions. Wiley, New York Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions. Wiley, New York
73.
go back to reference Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33:410–421. doi:10.1007/s00774-014-0602-x CrossRefPubMed Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33:410–421. doi:10.​1007/​s00774-014-0602-x CrossRefPubMed
74.
go back to reference Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD (2001) Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone 29:431–436CrossRefPubMed Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD (2001) Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone 29:431–436CrossRefPubMed
Metadata
Title
Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review
Authors
Saeed Soleyman-Jahi
Ali Yousefian
Radin Maheronnaghsh
Farhad Shokraneh
Shayan Abdollah Zadegan
Akbar Soltani
Seyed Mostafa Hosseini
Alexander R. Vaccaro
Vafa Rahimi-Movaghar
Publication date
01-08-2018
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 8/2018
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-017-5114-7

Other articles of this Issue 8/2018

European Spine Journal 8/2018 Go to the issue