Skip to main content
Top
Published in: Lasers in Medical Science 2/2019

01-03-2019 | Original Article

Evaluation of theranostic perspective of gold-silica nanoshell for cancer nano-medicine: a numerical parametric study

Authors: Xiao Xu, Yildiz Bayazitoglu, Andrew Meade Jr

Published in: Lasers in Medical Science | Issue 2/2019

Login to get access

Abstract

Using gold-silica nanoshell as a reference nano-agent, this work has performed preliminary numerical parametric study to investigate the feasibility and if feasible the efficiency of using a single nano-agent to achieve theranostic goals. In total, seven generics of gold-silica nanoshells have been tested including the R[50,10] (radius of the silica core is 50 nm and thickness of the gold shell is 10 nm), R[40,15], R[55,25], R[40,40], R[75,40], R[104,23], and R[154,24] nanoshells. A planar tissue model has been constructed as the platform for parametric study. For mathematical modeling, radiant transport equation (RTE) has been applied to describe the interactions among laser lights, the hosting tissue, and the hosted nanoshells and Penne’s bio-heat equation has been applied to describe the hyperthermia induced by such interactions. Effects of different nanoshell generics on the diffuse reflectance signal and hyperthermia temperature transition have been simulated, basing on which the potential of a certain nanoshell generic as theranostic nano-agent has been evaluated. It has been found that it is highly feasible for gold-silica nanoshells to be engineered for theranostic purpose and nanoshell generics that are preferentially scattering should be explored for good theranostic candidates. On the condition that nanoshell generic with the right optical properties has been located, a moderate nanoshell retention in the target tissue site is already sufficient to induce effective theranostic effects, which indicates that theranostic nano-medicine might not have a stringent requirement for the delivery technique. Among nanoshells that have been tested, the R[55,25] nanoshell seems to be a promising candidate as theranostic nano-agent. Further testing on it is highly recommended. Nanoshells that are preferentially absorbing such as the R[50,10] and R[40,15] nanoshells are efficient photothermal agent and could be used for therapeutic purpose only. However, it is not recommended that preferentially absorbing nanoshells being used for theranostic purpose due to possible negative effects such nanoshells might bring to the diffuse reflectance signal.
Literature
1.
go back to reference Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci 100(23):13549–13554PubMedCrossRef Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci 100(23):13549–13554PubMedCrossRef
2.
go back to reference O’Neal DP, Hirsch LR, Halas NJ (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176PubMedCrossRef O’Neal DP, Hirsch LR, Halas NJ (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176PubMedCrossRef
3.
go back to reference Goodrich G, Bao L, Gill-Sharp K, Sang K, Wang L, Payne J (2010) Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J Biomed Opt 15(1):1–7CrossRef Goodrich G, Bao L, Gill-Sharp K, Sang K, Wang L, Payne J (2010) Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J Biomed Opt 15(1):1–7CrossRef
4.
go back to reference Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang J, Li C (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886PubMedPubMedCentralCrossRef Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang J, Li C (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886PubMedPubMedCentralCrossRef
5.
go back to reference Lal S, Clare S, Halas N (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Accounts Chem Res 41(12):1842–1851CrossRef Lal S, Clare S, Halas N (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Accounts Chem Res 41(12):1842–1851CrossRef
6.
go back to reference Terentyuk G, Maslyakova G, Suleymanova L, Khlebtsov N, Khlebtsov G, Akchurin G, Maksimova I, Tuchin V (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14(2):1–9CrossRef Terentyuk G, Maslyakova G, Suleymanova L, Khlebtsov N, Khlebtsov G, Akchurin G, Maksimova I, Tuchin V (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14(2):1–9CrossRef
7.
go back to reference Perrault S, Chan W (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Nat Acad Sci 107(25):11194–11199PubMedCrossRef Perrault S, Chan W (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Nat Acad Sci 107(25):11194–11199PubMedCrossRef
8.
go back to reference Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X, Xie Y (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261CrossRef Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X, Xie Y (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261CrossRef
9.
go back to reference Loo C, Hirsch L, Lee M, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30(9):1012–1014PubMedCrossRef Loo C, Hirsch L, Lee M, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30(9):1012–1014PubMedCrossRef
10.
go back to reference Huang X, El-Sayed I, Qian W, El-Sayed M (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnosis marker. Nano Lett 7:1591–1597PubMedCrossRef Huang X, El-Sayed I, Qian W, El-Sayed M (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnosis marker. Nano Lett 7:1591–1597PubMedCrossRef
11.
go back to reference El-Sayed I, Huang X, El-Sayed M (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834PubMedCrossRef El-Sayed I, Huang X, El-Sayed M (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834PubMedCrossRef
12.
go back to reference Barton JK, Halas NJ, West JL, Drezek RA (2004) Nanoshells as an optical coherence tomography contrast agent. Proc SPIE 5316:99–106CrossRef Barton JK, Halas NJ, West JL, Drezek RA (2004) Nanoshells as an optical coherence tomography contrast agent. Proc SPIE 5316:99–106CrossRef
13.
go back to reference Wang Y, Xie X, Wang X, Ku G, Gill K, O’Neal D, Stoica G, Wang L (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692CrossRef Wang Y, Xie X, Wang X, Ku G, Gill K, O’Neal D, Stoica G, Wang L (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692CrossRef
14.
go back to reference Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032PubMedPubMedCentralCrossRef Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032PubMedPubMedCentralCrossRef
15.
go back to reference Sung KB, Liang C, Descour M, Collier T, Follen M, Richards-Kortum R (2002) Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissue. IEEE Trans Biomed Eng 49(10):1168–1172PubMedCrossRef Sung KB, Liang C, Descour M, Collier T, Follen M, Richards-Kortum R (2002) Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissue. IEEE Trans Biomed Eng 49(10):1168–1172PubMedCrossRef
16.
go back to reference Ren X, Chen H, Yang V, Sun D (2014) Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Front Chem Sci Eng 8(3):253–264CrossRef Ren X, Chen H, Yang V, Sun D (2014) Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Front Chem Sci Eng 8(3):253–264CrossRef
17.
go back to reference Upputuri PK, Huang S, Wang M, Pramanik M (2016) A dual function theranostic agent for near-infrared photoacoustic imaging and photothermal therapy, Proc SPIE 9723, 97230Y San Francisco, California, United States Upputuri PK, Huang S, Wang M, Pramanik M (2016) A dual function theranostic agent for near-infrared photoacoustic imaging and photothermal therapy, Proc SPIE 9723, 97230Y San Francisco, California, United States
18.
go back to reference Same S, Aghanejad A, Nakhjavani SA, Barar J, Omidi Y (2016) Radio-labeled theranostics: magnetic and gold nanoparticles. Biolmpacts 6(3):169–181CrossRef Same S, Aghanejad A, Nakhjavani SA, Barar J, Omidi Y (2016) Radio-labeled theranostics: magnetic and gold nanoparticles. Biolmpacts 6(3):169–181CrossRef
19.
go back to reference Xiong Y, Wang J, Idee J, Corot C (2015) Scientific and industrial challenges of developing nanoparticle-based theranostics and multiple-modality contrast agents for clinical application. Nanoscale 7:16146–16150CrossRef Xiong Y, Wang J, Idee J, Corot C (2015) Scientific and industrial challenges of developing nanoparticle-based theranostics and multiple-modality contrast agents for clinical application. Nanoscale 7:16146–16150CrossRef
20.
go back to reference Shanbhag PP, Iyer V, Shetty T (2017) Gold nanoshells: a ray of hope in cancer diagnosis and treatment. Nucl Med Biol Imag 2(2):1–5 Shanbhag PP, Iyer V, Shetty T (2017) Gold nanoshells: a ray of hope in cancer diagnosis and treatment. Nucl Med Biol Imag 2(2):1–5
21.
go back to reference Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394PubMedCrossRef Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394PubMedCrossRef
22.
go back to reference Chen W, Zhang S, Yu Y, Zhang H, He Q (2016) Structural-engineering rationales of gold nanoparticles for cancer theranositcs. Adv Mater (Deerfield Beach, Fla) 28(39):8567–8585CrossRef Chen W, Zhang S, Yu Y, Zhang H, He Q (2016) Structural-engineering rationales of gold nanoparticles for cancer theranositcs. Adv Mater (Deerfield Beach, Fla) 28(39):8567–8585CrossRef
23.
go back to reference Guo J, Rahme K, He Y, Li L, Holmes JD, O’Driscoll C (2017) Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomed 12:6131–6152CrossRef Guo J, Rahme K, He Y, Li L, Holmes JD, O’Driscoll C (2017) Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomed 12:6131–6152CrossRef
25.
go back to reference Vinhas R, Cordeiro M, Carlos FF, Mendo S, Fernandes AR, Figueiredo S, Baptista PV (2015) Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors in Disease Diagnosis 4:11–23 Vinhas R, Cordeiro M, Carlos FF, Mendo S, Fernandes AR, Figueiredo S, Baptista PV (2015) Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors in Disease Diagnosis 4:11–23
26.
go back to reference Fang W, Wei Y (2016) Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy. J Innov Opt Heal Sci 9(4):1–20 Fang W, Wei Y (2016) Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy. J Innov Opt Heal Sci 9(4):1–20
27.
go back to reference Jo SD, Ku SH, Won Y, Kim SH, Kwon IC (2016) Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics 6(9):1362–1377PubMedPubMedCentralCrossRef Jo SD, Ku SH, Won Y, Kim SH, Kwon IC (2016) Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics 6(9):1362–1377PubMedPubMedCentralCrossRef
29.
go back to reference Lammers T, Kiessling G, Hennick WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912PubMedCrossRef Lammers T, Kiessling G, Hennick WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912PubMedCrossRef
31.
go back to reference Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038PubMedCrossRef Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038PubMedCrossRef
32.
go back to reference Lammers T, Rizzo LY, Storm G, Kiessling F (2012) Personalized nanomedicine. Clin Cancer Res 18:4889–4894PubMedCrossRef Lammers T, Rizzo LY, Storm G, Kiessling F (2012) Personalized nanomedicine. Clin Cancer Res 18:4889–4894PubMedCrossRef
33.
go back to reference Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363–1384PubMedPubMedCentralCrossRef Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363–1384PubMedPubMedCentralCrossRef
34.
go back to reference Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64:1394–1416PubMedCrossRef Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64:1394–1416PubMedCrossRef
35.
go back to reference Vera J, Bayazitoglu Y (2009) Gold nanoshell density variation with laser power for induced hyperthermia. Int J Heat Mass Tran 52:564–573CrossRef Vera J, Bayazitoglu Y (2009) Gold nanoshell density variation with laser power for induced hyperthermia. Int J Heat Mass Tran 52:564–573CrossRef
36.
go back to reference Vera J, Bayazitoglu Y (2009) A note on laser penetration in nanoshell deposited tissue. Int J Heat Mass Tran 52(13/14):3402–3406CrossRef Vera J, Bayazitoglu Y (2009) A note on laser penetration in nanoshell deposited tissue. Int J Heat Mass Tran 52(13/14):3402–3406CrossRef
37.
go back to reference Xu X, Meade A, Bayazitoglu Y (2013) Feasibility of selctive nanoparticle-assisted photothermal treatment for an embedded liver tumor. Laser Med Sci 28:1159–1168CrossRef Xu X, Meade A, Bayazitoglu Y (2013) Feasibility of selctive nanoparticle-assisted photothermal treatment for an embedded liver tumor. Laser Med Sci 28:1159–1168CrossRef
38.
go back to reference Xu X, Meade A, Bayazitoglu Y (2011) Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatment. Laser Med Sci 26:213–222CrossRef Xu X, Meade A, Bayazitoglu Y (2011) Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatment. Laser Med Sci 26:213–222CrossRef
39.
go back to reference Xu X, Meade A, Bayazitoglu Y (2010) Fluence rate distribution in laser-induced interstitial thermotherapy by meshfree collocation. Int J Heat Mass Tran 53:4017–4022CrossRef Xu X, Meade A, Bayazitoglu Y (2010) Fluence rate distribution in laser-induced interstitial thermotherapy by meshfree collocation. Int J Heat Mass Tran 53:4017–4022CrossRef
40.
go back to reference Vera J, Bayazitoglu Y (2009) A note on laser penetration in nanoshell deposited tissue. Int J Heat Mass Tran 52(13/14):3402–3406CrossRef Vera J, Bayazitoglu Y (2009) A note on laser penetration in nanoshell deposited tissue. Int J Heat Mass Tran 52(13/14):3402–3406CrossRef
41.
go back to reference Eillot AM, Schwartz JS, Wang J, Shetty AM, Biogeny C, O’Neal D, Hazle J, Stafford RJ (2009) Quantitative comparison of delta p1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating. Med Phys 36(4):1351–1358CrossRef Eillot AM, Schwartz JS, Wang J, Shetty AM, Biogeny C, O’Neal D, Hazle J, Stafford RJ (2009) Quantitative comparison of delta p1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating. Med Phys 36(4):1351–1358CrossRef
42.
go back to reference Lin A, Lewinski N, West J, Halas N, Drezek R (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10(6):064035PubMedCrossRef Lin A, Lewinski N, West J, Halas N, Drezek R (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10(6):064035PubMedCrossRef
43.
go back to reference Feng Y, Rylander MN, Bass J, Oden JT, Diller K (2005) Optimal design of laser surgery for cancer treatment through nanoparticle-mediated hyperthermia therapy. Nano Sci Tech Institute (NSTI) -Nano technology 1:39–42 Feng Y, Rylander MN, Bass J, Oden JT, Diller K (2005) Optimal design of laser surgery for cancer treatment through nanoparticle-mediated hyperthermia therapy. Nano Sci Tech Institute (NSTI) -Nano technology 1:39–42
44.
go back to reference Feng Y, Fuentes D, Hawkins A, Bass J, Rylander MN, Eillot A, Shetty A, Stafford RJ, Oden JT (2009) Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng Comput 25:3–13PubMedPubMedCentralCrossRef Feng Y, Fuentes D, Hawkins A, Bass J, Rylander MN, Eillot A, Shetty A, Stafford RJ, Oden JT (2009) Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng Comput 25:3–13PubMedPubMedCentralCrossRef
45.
go back to reference Tjahjono I, Bayazitoglu Y (2008) Near-infrared light heating of a slab by embedded nanoparticles. Int J Heat Mass Tran 51:1505–1515CrossRef Tjahjono I, Bayazitoglu Y (2008) Near-infrared light heating of a slab by embedded nanoparticles. Int J Heat Mass Tran 51:1505–1515CrossRef
46.
go back to reference Bayazitoglu Y (2009) Nanoshell assisted cancer thermal therapy: numerical simulations. In: Proceeding the 2nd ASME Micro/Nanoscale Heat Mass Transfer An International Conference Shanghai Bayazitoglu Y (2009) Nanoshell assisted cancer thermal therapy: numerical simulations. In: Proceeding the 2nd ASME Micro/Nanoscale Heat Mass Transfer An International Conference Shanghai
47.
go back to reference Bayazitoglu Y, Kheradmand S, Tullius TK (2013) An overview of nanoparticle assisted laser therapy. Int J Heat Mass Tran 67:469–486CrossRef Bayazitoglu Y, Kheradmand S, Tullius TK (2013) An overview of nanoparticle assisted laser therapy. Int J Heat Mass Tran 67:469–486CrossRef
48.
go back to reference Bayazitoglu Y (2014) Volumetric laser or solar heating with plasmonic nanoparticles. In: Proceedings of the 15th Int. Heat Transfer Conference, IHTC-15, IHTC15-KN20 Kyoto, Japan, pp 8 Bayazitoglu Y (2014) Volumetric laser or solar heating with plasmonic nanoparticles. In: Proceedings of the 15th Int. Heat Transfer Conference, IHTC-15, IHTC15-KN20 Kyoto, Japan, pp 8
49.
go back to reference Lin A (2006) Nanoengineered contrast agents for biophotonics: modeling and experimental measurements of gold nanoshell reflectance, Ph.D dissertation. Rice University, Houston Lin A (2006) Nanoengineered contrast agents for biophotonics: modeling and experimental measurements of gold nanoshell reflectance, Ph.D dissertation. Rice University, Houston
50.
go back to reference McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Delivery Rev 60(11):1241–1251CrossRef McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Delivery Rev 60(11):1241–1251CrossRef
51.
go back to reference Welch AJ, Gardner C (2002). In: Waynant RW (ed) Optical and thermal response of tissue to laser radiation. Lasers Med, pp 27-45. CRC Press, Boca Raton Welch AJ, Gardner C (2002). In: Waynant RW (ed) Optical and thermal response of tissue to laser radiation. Lasers Med, pp 27-45. CRC Press, Boca Raton
52.
go back to reference Jacques SG, Chandrasekar S (1980) Radiative transfer. Oxford University Press, London Jacques SG, Chandrasekar S (1980) Radiative transfer. Oxford University Press, London
53.
go back to reference Ishimaru A (1978) Wave propagation and scattering in random medium. Academic Press, New York Ishimaru A (1978) Wave propagation and scattering in random medium. Academic Press, New York
54.
go back to reference Toricelli A, Pifferi A, Taroni P, Giambattistelli E, Cubeddu R (2001) In vivo optical characterization of human tissues from 610-1010 nm by time-resolved reflectance spectroscopy. Phys Med Biol 46:2227–2237CrossRef Toricelli A, Pifferi A, Taroni P, Giambattistelli E, Cubeddu R (2001) In vivo optical characterization of human tissues from 610-1010 nm by time-resolved reflectance spectroscopy. Phys Med Biol 46:2227–2237CrossRef
55.
go back to reference Doornbos R, Lang R, Aalders M, Cross F, Sterenborg H (1999) The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol 44:967–981PubMedCrossRef Doornbos R, Lang R, Aalders M, Cross F, Sterenborg H (1999) The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol 44:967–981PubMedCrossRef
56.
go back to reference Mishra S, Roy H, Misra N (2006) Discrete ordinate method with a new and a simple quadrature scheme. J Quant Spectrosc Rad Tran 101:249–262CrossRef Mishra S, Roy H, Misra N (2006) Discrete ordinate method with a new and a simple quadrature scheme. J Quant Spectrosc Rad Tran 101:249–262CrossRef
57.
go back to reference Fiveland W (1987) Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures. J Heat Tran 109(4):1048–1051CrossRef Fiveland W (1987) Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures. J Heat Tran 109(4):1048–1051CrossRef
58.
go back to reference Truelove J (1984) Discrete-ordinates solutions of the radiative transport equation. J Heat Tran 106:699–706CrossRef Truelove J (1984) Discrete-ordinates solutions of the radiative transport equation. J Heat Tran 106:699–706CrossRef
59.
go back to reference Chui E, Raithby G, Hughes P (1990) A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J Heat Tran 112(2):415–423CrossRef Chui E, Raithby G, Hughes P (1990) A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J Heat Tran 112(2):415–423CrossRef
60.
go back to reference Chai J, Lee H, Patankar S (1994) Finite volume method for radiative heat transfer. J Thermophys Heat Tran 8(3):419–425CrossRef Chai J, Lee H, Patankar S (1994) Finite volume method for radiative heat transfer. J Thermophys Heat Tran 8(3):419–425CrossRef
61.
go back to reference Henyey L, Greenstein J (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83CrossRef Henyey L, Greenstein J (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83CrossRef
62.
go back to reference Mie G (1908) Beitrage zur Optik truber Medien, speziell kolloidaler metallosungen. Ann Phys 330:377–445CrossRef Mie G (1908) Beitrage zur Optik truber Medien, speziell kolloidaler metallosungen. Ann Phys 330:377–445CrossRef
63.
go back to reference Collier T, Lacy A, Richard-Kortum R, Malpica A, Follen M (2002) Near real-time confocal microscopy of amelanotic tissue. Acad Radiol 9(5):504–512PubMedCrossRef Collier T, Lacy A, Richard-Kortum R, Malpica A, Follen M (2002) Near real-time confocal microscopy of amelanotic tissue. Acad Radiol 9(5):504–512PubMedCrossRef
64.
go back to reference Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21(11):1361–1367PubMedCrossRef Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21(11):1361–1367PubMedCrossRef
65.
go back to reference Zeng H, Petek M, Zorman MT, McWilliams A, Palcic B, Lam S (2004) Integrated endoscopy system for simultaneous imaging and spectroscopy for early lung cancer detection. Opt Lett 29(6):587–589PubMedCrossRef Zeng H, Petek M, Zorman MT, McWilliams A, Palcic B, Lam S (2004) Integrated endoscopy system for simultaneous imaging and spectroscopy for early lung cancer detection. Opt Lett 29(6):587–589PubMedCrossRef
66.
go back to reference Sassaroli E, Li K, Oneill B (2009) Numerical investigation of heating a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulse for nanomedicine applications. Phys Med Biol 54:5541–5560PubMedCrossRef Sassaroli E, Li K, Oneill B (2009) Numerical investigation of heating a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulse for nanomedicine applications. Phys Med Biol 54:5541–5560PubMedCrossRef
67.
go back to reference Ratzel AC, Howell JR (1983) Two-dimensional radiation in absorbing-emitting media using the P-N approximation. J Heat Tran 105(2):333–340CrossRef Ratzel AC, Howell JR (1983) Two-dimensional radiation in absorbing-emitting media using the P-N approximation. J Heat Tran 105(2):333–340CrossRef
68.
go back to reference Matsumura Y, Maede H (1986) A new concept of macromolecular therapies in cancer chemotherapy: mechanism of tumor tropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 6:6387–6392 Matsumura Y, Maede H (1986) A new concept of macromolecular therapies in cancer chemotherapy: mechanism of tumor tropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 6:6387–6392
69.
go back to reference Maede H, Wu J, Sawa T, Matsumura Y, Hori K (2001) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271– 284CrossRef Maede H, Wu J, Sawa T, Matsumura Y, Hori K (2001) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271– 284CrossRef
70.
go back to reference Maede H, Fange J, Unstuck T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328CrossRef Maede H, Fange J, Unstuck T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328CrossRef
71.
go back to reference Iyer A, Khaled G, Fange J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818PubMedCrossRef Iyer A, Khaled G, Fange J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818PubMedCrossRef
72.
go back to reference Struesson C, Andersson-Engels S, Svanberg S (1995) A numerical model for the temperature increase in surface-applied laser-induced thermo therapy with applications to tumor blood flow estimations, Laser-induced interstitial thermotherapy. SPIE, Bellingham, pp 157–173 Struesson C, Andersson-Engels S, Svanberg S (1995) A numerical model for the temperature increase in surface-applied laser-induced thermo therapy with applications to tumor blood flow estimations, Laser-induced interstitial thermotherapy. SPIE, Bellingham, pp 157–173
Metadata
Title
Evaluation of theranostic perspective of gold-silica nanoshell for cancer nano-medicine: a numerical parametric study
Authors
Xiao Xu
Yildiz Bayazitoglu
Andrew Meade Jr
Publication date
01-03-2019
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 2/2019
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2608-4

Other articles of this Issue 2/2019

Lasers in Medical Science 2/2019 Go to the issue