Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Evaluation of the tumor movement and the reproducibility of two different immobilization setups for image-guided stereotactic body radiotherapy of liver tumors

Authors: Constantin Dreher, Markus Oechsner, Michael Mayinger, Stefanie Beierl, Marciana-Nona Duma, Stephanie E. Combs, Daniel Habermehl

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

The purpose of this study is to evaluate the tumor movement and accuracy of patient immobilization in stereotactic body radiotherapy of liver tumors with low pressure foil or abdominal compression.

Methods

Fifty-four liver tumors treated with stereotactic body radiotherapy were included in this study. Forty patients were immobilized by a vacuum couch with low pressure foil, 14 patients by abdominal compression. We evaluated the ratio of gross tumor volume/internal target volume, the tumor movement in 4D-computed tomography scans and daily online adjustments after cone beam computed tomography scans.

Results

The ratio of gross tumor volume/internal target volume was smaller with low pressure foil. The tumor movement in 4D-computed tomography scans was smaller with abdominal compression, the cranial movement even significantly different (p = 0.02). The mean online adjustments and their mean absolute values in the vertical, lateral and longitudinal axis were smaller with abdominal compression. The online adjustments were significantly different (p < 0.013), their absolute values in case of the longitudinal axis (p = 0.043). There was no significant difference of the adjustments’ 3D vectors.

Conclusions

In comparison to low pressure foil, abdominal compression leads to a reduction of the tumor movement. Online adjustments decreased significantly, thus leading to higher accuracy in patient positioning.
Literature
1.
go back to reference Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, Dinniwell RE, Kassam Z, Ringash J, Cummings B, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31:1631–9.CrossRefPubMed Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, Dinniwell RE, Kassam Z, Ringash J, Cummings B, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31:1631–9.CrossRefPubMed
2.
go back to reference Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J, Sherman M, Dawson LA. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26:657–64.CrossRefPubMed Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J, Sherman M, Dawson LA. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26:657–64.CrossRefPubMed
3.
go back to reference Habermehl D, Herfarth KK, Bermejo JL, Hof H, Rieken S, Kuhn S, Welzel T, Debus J, Combs SE. Single-dose radiosurgical treatment for hepatic metastases - therapeutic outcome of 138 treated lesions from a single institution. Radiat Oncol. 2013;8:175.CrossRefPubMedPubMedCentral Habermehl D, Herfarth KK, Bermejo JL, Hof H, Rieken S, Kuhn S, Welzel T, Debus J, Combs SE. Single-dose radiosurgical treatment for hepatic metastases - therapeutic outcome of 138 treated lesions from a single institution. Radiat Oncol. 2013;8:175.CrossRefPubMedPubMedCentral
4.
go back to reference Mendez Romero A, Hoyer M. Radiation therapy for liver metastases. Curr Opin Support Palliat Care. 2012;6:97–102.CrossRefPubMed Mendez Romero A, Hoyer M. Radiation therapy for liver metastases. Curr Opin Support Palliat Care. 2012;6:97–102.CrossRefPubMed
5.
go back to reference Andratschke N, Parys A, Stadtfeld S, Wurster S, Huttenlocher S, Imhoff D, Yildirim M, Rades D, Rodel CM, Dunst J, et al. Clinical results of mean GTV dose optimized robotic guided SBRT for liver metastases. Radiat Oncol. 2016;11:74.CrossRefPubMedPubMedCentral Andratschke N, Parys A, Stadtfeld S, Wurster S, Huttenlocher S, Imhoff D, Yildirim M, Rades D, Rodel CM, Dunst J, et al. Clinical results of mean GTV dose optimized robotic guided SBRT for liver metastases. Radiat Oncol. 2016;11:74.CrossRefPubMedPubMedCentral
6.
go back to reference Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, Ten Haken RK. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76:S94–100.CrossRefPubMedPubMedCentral Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, Ten Haken RK. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76:S94–100.CrossRefPubMedPubMedCentral
7.
go back to reference Herrmann E, Naehrig D, Sassowsky M, Bigler M, Buijsen J, Ciernik I, Zwahlen D, Pellanda AF, Meister A, Brauchli P, et al. External beam radiotherapy for unresectable hepatocellular carcinoma, an international multicenter phase I trial, SAKK 77/07 and SASL 26. Radiat Oncol. 2017;12:12.CrossRefPubMedPubMedCentral Herrmann E, Naehrig D, Sassowsky M, Bigler M, Buijsen J, Ciernik I, Zwahlen D, Pellanda AF, Meister A, Brauchli P, et al. External beam radiotherapy for unresectable hepatocellular carcinoma, an international multicenter phase I trial, SAKK 77/07 and SASL 26. Radiat Oncol. 2017;12:12.CrossRefPubMedPubMedCentral
8.
go back to reference Dawson LA, Ten Haken RK. Partial volume tolerance of the liver to radiation. Semin Radiat Oncol. 2005;15:279–83.CrossRefPubMed Dawson LA, Ten Haken RK. Partial volume tolerance of the liver to radiation. Semin Radiat Oncol. 2005;15:279–83.CrossRefPubMed
9.
go back to reference Jung J, Yoon SM, Kim SY, Cho B, Park JH, Kim SS, Song SY, Lee SW, Ahn SD, Choi EK, Kim JH. Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters. Radiat Oncol. 2013;8:249.CrossRefPubMedPubMedCentral Jung J, Yoon SM, Kim SY, Cho B, Park JH, Kim SS, Song SY, Lee SW, Ahn SD, Choi EK, Kim JH. Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters. Radiat Oncol. 2013;8:249.CrossRefPubMedPubMedCentral
10.
go back to reference Cheng JC, Wu JK, Huang CM, Liu HS, Huang DY, Cheng SH, Tsai SY, Jian JJ, Lin YM, Cheng TI, et al. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys. 2002;54:156–62.CrossRefPubMed Cheng JC, Wu JK, Huang CM, Liu HS, Huang DY, Cheng SH, Tsai SY, Jian JJ, Lin YM, Cheng TI, et al. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys. 2002;54:156–62.CrossRefPubMed
11.
go back to reference Huang Y, Chen SW, Fan CC, Ting LL, Kuo CC, Chiou JF. Clinical parameters for predicting radiation-induced liver disease after intrahepatic reirradiation for hepatocellular carcinoma. Radiat Oncol. 2016;11:89.CrossRefPubMedPubMedCentral Huang Y, Chen SW, Fan CC, Ting LL, Kuo CC, Chiou JF. Clinical parameters for predicting radiation-induced liver disease after intrahepatic reirradiation for hepatocellular carcinoma. Radiat Oncol. 2016;11:89.CrossRefPubMedPubMedCentral
12.
go back to reference Sterzing F, Brunner TB, Ernst I, Baus WW, Greve B, Herfarth K, Guckenberger M. Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO working group on stereotactic radiotherapy. Strahlenther Onkol. 2014;190:872–81.CrossRefPubMed Sterzing F, Brunner TB, Ernst I, Baus WW, Greve B, Herfarth K, Guckenberger M. Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO working group on stereotactic radiotherapy. Strahlenther Onkol. 2014;190:872–81.CrossRefPubMed
13.
go back to reference Sio TT, Jensen AR, Miller RC, de los Santos LEF, Hallemeier CL, Foster NR, Park SS, Bauer HJ, Chang K, Garces YI, Olivier KR. Influence of patient’s physiologic factors and immobilization choice with stereotactic body radiotherapy for upper lung tumors. J Appl Clin Med Phys. 2014;15:4931.PubMed Sio TT, Jensen AR, Miller RC, de los Santos LEF, Hallemeier CL, Foster NR, Park SS, Bauer HJ, Chang K, Garces YI, Olivier KR. Influence of patient’s physiologic factors and immobilization choice with stereotactic body radiotherapy for upper lung tumors. J Appl Clin Med Phys. 2014;15:4931.PubMed
14.
go back to reference Foster R, Meyer J, Iyengar P, Pistenmaa D, Timmerman R, Choy H, Solberg T. Localization accuracy and immobilization effectiveness of a stereotactic body frame for a variety of treatment sites. Int J Radiat Oncol Biol Phys. 2013;87:911–6.CrossRefPubMed Foster R, Meyer J, Iyengar P, Pistenmaa D, Timmerman R, Choy H, Solberg T. Localization accuracy and immobilization effectiveness of a stereotactic body frame for a variety of treatment sites. Int J Radiat Oncol Biol Phys. 2013;87:911–6.CrossRefPubMed
15.
go back to reference Han K, Cheung P, Basran PS, Poon I, Yeung L, Lochray F. A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors. Radiother Oncol. 2010;95:103–8.CrossRefPubMed Han K, Cheung P, Basran PS, Poon I, Yeung L, Lochray F. A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors. Radiother Oncol. 2010;95:103–8.CrossRefPubMed
16.
go back to reference Navarro-Martin A, Cacicedo J, Leaman O, Sancho I, Garcia E, Navarro V, Guedea F. Comparative analysis of thermoplastic masks versus vacuum cushions in stereotactic body radiotherapy. Radiat Oncol. 2015;10:176.CrossRefPubMedPubMedCentral Navarro-Martin A, Cacicedo J, Leaman O, Sancho I, Garcia E, Navarro V, Guedea F. Comparative analysis of thermoplastic masks versus vacuum cushions in stereotactic body radiotherapy. Radiat Oncol. 2015;10:176.CrossRefPubMedPubMedCentral
17.
go back to reference Herfarth KK, Debus J, Lohr F, Bahner ML, Fritz P, Hoss A, Schlegel W, Wannenmacher MF. Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys. 2000;46:329–35.CrossRefPubMed Herfarth KK, Debus J, Lohr F, Bahner ML, Fritz P, Hoss A, Schlegel W, Wannenmacher MF. Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys. 2000;46:329–35.CrossRefPubMed
18.
go back to reference Alderliesten T, Sonke JJ, Betgen A, van Vliet-Vroegindeweij C, Remeijer P. 3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer. Radiother Oncol. 2012;105:155–60.CrossRefPubMed Alderliesten T, Sonke JJ, Betgen A, van Vliet-Vroegindeweij C, Remeijer P. 3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer. Radiother Oncol. 2012;105:155–60.CrossRefPubMed
19.
go back to reference Josipovic M, Persson GF, Logadottir A, Smulders B, Westmann G, Bangsgaard JP. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy. Acta Oncol. 2012;51:610–7.CrossRefPubMed Josipovic M, Persson GF, Logadottir A, Smulders B, Westmann G, Bangsgaard JP. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy. Acta Oncol. 2012;51:610–7.CrossRefPubMed
20.
go back to reference Peguret N, Dahele M, Cuijpers JP, Slotman BJ, Verbakel WF. Frameless high dose rate stereotactic lung radiotherapy: intrafraction tumor position and delivery time. Radiother Oncol. 2013;107:419–22.CrossRefPubMed Peguret N, Dahele M, Cuijpers JP, Slotman BJ, Verbakel WF. Frameless high dose rate stereotactic lung radiotherapy: intrafraction tumor position and delivery time. Radiother Oncol. 2013;107:419–22.CrossRefPubMed
21.
go back to reference Eccles CL, Dawson LA, Moseley JL, Brock KK. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int J Radiat Oncol Biol Phys. 2011;80:938–46.CrossRefPubMed Eccles CL, Dawson LA, Moseley JL, Brock KK. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int J Radiat Oncol Biol Phys. 2011;80:938–46.CrossRefPubMed
22.
go back to reference Habermehl D, Henkner K, Ecker S, Jakel O, Debus J, Combs SE. Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. J Radiat Res. 2013;54(Suppl 1):i61–8.CrossRefPubMedPubMedCentral Habermehl D, Henkner K, Ecker S, Jakel O, Debus J, Combs SE. Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. J Radiat Res. 2013;54(Suppl 1):i61–8.CrossRefPubMedPubMedCentral
23.
go back to reference Habermehl D, Naumann P, Bendl R, Oelfke U, Nill S, Debus J, Combs SE. Evaluation of inter- and intrafractional motion of liver tumors using interstitial markers and implantable electromagnetic radiotransmitters in the context of image-guided radiotherapy (IGRT) - the ESMERALDA trial. Radiat Oncol. 2015;10:143.CrossRefPubMedPubMedCentral Habermehl D, Naumann P, Bendl R, Oelfke U, Nill S, Debus J, Combs SE. Evaluation of inter- and intrafractional motion of liver tumors using interstitial markers and implantable electromagnetic radiotransmitters in the context of image-guided radiotherapy (IGRT) - the ESMERALDA trial. Radiat Oncol. 2015;10:143.CrossRefPubMedPubMedCentral
24.
go back to reference Heinz C, Gerum S, Freislederer P, Ganswindt U, Roeder F, Corradini S, Belka C, Niyazi M. Feasibility study on image guided patient positioning for stereotactic body radiation therapy of liver malignancies guided by liver motion. Radiat Oncol. 2016;11:88.CrossRefPubMedPubMedCentral Heinz C, Gerum S, Freislederer P, Ganswindt U, Roeder F, Corradini S, Belka C, Niyazi M. Feasibility study on image guided patient positioning for stereotactic body radiation therapy of liver malignancies guided by liver motion. Radiat Oncol. 2016;11:88.CrossRefPubMedPubMedCentral
25.
go back to reference Poulsen PR, Worm ES, Hansen R, Larsen LP, Grau C, Hoyer M. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: first results. Acta Oncol. 2015;54:1445–52.CrossRefPubMed Poulsen PR, Worm ES, Hansen R, Larsen LP, Grau C, Hoyer M. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: first results. Acta Oncol. 2015;54:1445–52.CrossRefPubMed
26.
go back to reference Velec M, Moseley JL, Dawson LA, Brock KK. Dose escalated liver stereotactic body radiation therapy at the mean respiratory position. Int J Radiat Oncol Biol Phys. 2014;89:1121–8.CrossRefPubMedPubMedCentral Velec M, Moseley JL, Dawson LA, Brock KK. Dose escalated liver stereotactic body radiation therapy at the mean respiratory position. Int J Radiat Oncol Biol Phys. 2014;89:1121–8.CrossRefPubMedPubMedCentral
27.
go back to reference Wojcieszynski AP, Rosenberg SA, Brower JV, Hullett CR, Geurts MW, Labby ZE, Hill PM, Bayliss RA, Paliwal B, Bayouth JE, et al. Gadoxetate for direct tumor therapy and tracking with real-time MRI-guided stereotactic body radiation therapy of the liver. Radiother Oncol. 2016;118:416–8.CrossRefPubMed Wojcieszynski AP, Rosenberg SA, Brower JV, Hullett CR, Geurts MW, Labby ZE, Hill PM, Bayliss RA, Paliwal B, Bayouth JE, et al. Gadoxetate for direct tumor therapy and tracking with real-time MRI-guided stereotactic body radiation therapy of the liver. Radiother Oncol. 2016;118:416–8.CrossRefPubMed
28.
go back to reference Mendez Romero A, de Man RA. Stereotactic body radiation therapy for primary and metastatic liver tumors: from technological evolution to improved patient care. Best Pract Res Clin Gastroenterol. 2016;30:603–16.CrossRefPubMed Mendez Romero A, de Man RA. Stereotactic body radiation therapy for primary and metastatic liver tumors: from technological evolution to improved patient care. Best Pract Res Clin Gastroenterol. 2016;30:603–16.CrossRefPubMed
29.
go back to reference Crane CH, Koay EJ. Solutions that enable ablative radiotherapy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer. 2016;122:1974–86.CrossRefPubMedPubMedCentral Crane CH, Koay EJ. Solutions that enable ablative radiotherapy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer. 2016;122:1974–86.CrossRefPubMedPubMedCentral
30.
go back to reference Dreher C, Hoyer KI, Fode MM, Habermehl D, Combs SE, Hoyer M. Metabolic liver function after stereotactic body radiation therapy for hepatocellular carcinoma. Acta Oncol. 2016;55:886–91.CrossRefPubMed Dreher C, Hoyer KI, Fode MM, Habermehl D, Combs SE, Hoyer M. Metabolic liver function after stereotactic body radiation therapy for hepatocellular carcinoma. Acta Oncol. 2016;55:886–91.CrossRefPubMed
Metadata
Title
Evaluation of the tumor movement and the reproducibility of two different immobilization setups for image-guided stereotactic body radiotherapy of liver tumors
Authors
Constantin Dreher
Markus Oechsner
Michael Mayinger
Stefanie Beierl
Marciana-Nona Duma
Stephanie E. Combs
Daniel Habermehl
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-0962-9

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue