Skip to main content
Top
Published in: EJNMMI Research 1/2012

Open Access 01-12-2012 | Original research

Evaluation of limited blood sampling population input approaches for kinetic quantification of [18F]fluorothymidine PET data

Authors: Kaiyumars B Contractor, Laura M Kenny, Charles R Coombes, Federico E Turkheimer, Eric O Aboagye, Lula Rosso

Published in: EJNMMI Research | Issue 1/2012

Login to get access

Abstract

Background

Quantification of kinetic parameters of positron emission tomography (PET) imaging agents normally requires collecting arterial blood samples which is inconvenient for patients and difficult to implement in routine clinical practice. The aim of this study was to investigate whether a population-based input function (POP-IF) reliant on only a few individual discrete samples allows accurate estimates of tumour proliferation using [18F]fluorothymidine (FLT).

Methods

Thirty-six historical FLT-PET data with concurrent arterial sampling were available for this study. A population average of baseline scans blood data was constructed using leave-one-out cross-validation for each scan and used in conjunction with individual blood samples. Three limited sampling protocols were investigated including, respectively, only seven (POP-IF7), five (POP-IF5) and three (POP-IF3) discrete samples of the historical dataset. Additionally, using the three-point protocol, we derived a POP-IF3M, the only input function which was not corrected for the fraction of radiolabelled metabolites present in blood. The kinetic parameter for net FLT retention at steady state, Ki, was derived using the modified Patlak plot and compared with the original full arterial set for validation.

Results

Small percentage differences in the area under the curve between all the POP-IFs and full arterial sampling IF was found over 60 min (4.2%-5.7%), while there were, as expected, larger differences in the peak position and peak height.
A high correlation between Ki values calculated using the original arterial input function and all the population-derived IFs was observed (R2 = 0.85-0.98). The population-based input showed good intra-subject reproducibility of Ki values (R2 = 0.81-0.94) and good correlation (R2 = 0.60-0.85) with Ki-67.

Conclusions

Input functions generated using these simplified protocols over scan duration of 60 min estimate net PET-FLT retention with reasonable accuracy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al.: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998,4(11):1334–1336. 10.1038/3337PubMedCrossRef Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al.: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998,4(11):1334–1336. 10.1038/3337PubMedCrossRef
2.
go back to reference Rudin M: Molecular Imaging--Basic Principles and Applications in Biomedical Research. London: Imperial College Press; 2005.CrossRef Rudin M: Molecular Imaging--Basic Principles and Applications in Biomedical Research. London: Imperial College Press; 2005.CrossRef
3.
go back to reference Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al.: Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003,44(9):1426–1431.PubMed Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al.: Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003,44(9):1426–1431.PubMed
4.
go back to reference Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, et al.: Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 2008, 14: 2049–2055. 10.1158/1078-0432.CCR-07-1553PubMedCrossRef Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, et al.: Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 2008, 14: 2049–2055. 10.1158/1078-0432.CCR-07-1553PubMedCrossRef
5.
go back to reference Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, et al.: Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [F-18]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 2005,65(21):10104–10112. 10.1158/0008-5472.CAN-04-4297PubMedCrossRef Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, et al.: Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [F-18]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 2005,65(21):10104–10112. 10.1158/0008-5472.CAN-04-4297PubMedCrossRef
6.
go back to reference Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al.: Molecular imaging of proliferation in malignant lymphoma. Cancer Res 2006,66(22):11055–11061. 10.1158/0008-5472.CAN-06-1955PubMedCrossRef Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al.: Molecular imaging of proliferation in malignant lymphoma. Cancer Res 2006,66(22):11055–11061. 10.1158/0008-5472.CAN-06-1955PubMedCrossRef
7.
go back to reference Mourik JEM, van Velden FHP, Lubberink M, Kloet RW, van Berckel BNM, Lammertsma AA, et al.: Image derived input functions for dynamic high resolution research tomograph PET brain studies. Neuroimage 2008,43(4):676–686. 10.1016/j.neuroimage.2008.07.035PubMedCrossRef Mourik JEM, van Velden FHP, Lubberink M, Kloet RW, van Berckel BNM, Lammertsma AA, et al.: Image derived input functions for dynamic high resolution research tomograph PET brain studies. Neuroimage 2008,43(4):676–686. 10.1016/j.neuroimage.2008.07.035PubMedCrossRef
8.
go back to reference Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME: Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 1992,33(4):613–620.PubMed Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME: Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 1992,33(4):613–620.PubMed
9.
go back to reference Watabe H, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, et al.: Noninvasive estimation of the aorta input function for measurement of tumor blood flow with. IEEE Trans Med Imaging 2001,20(3):164–174. 10.1109/42.918468PubMedCrossRef Watabe H, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, et al.: Noninvasive estimation of the aorta input function for measurement of tumor blood flow with. IEEE Trans Med Imaging 2001,20(3):164–174. 10.1109/42.918468PubMedCrossRef
10.
go back to reference Asselin MC, Cunningham VJ, Amano S, Gunn RN, Nahmias C: Parametrically defined cerebral blood vessels as non-invasive blood input functions for brain PET studies. Phys Med Biol 2004,49(6):1033–1054. 10.1088/0031-9155/49/6/013PubMedCrossRef Asselin MC, Cunningham VJ, Amano S, Gunn RN, Nahmias C: Parametrically defined cerebral blood vessels as non-invasive blood input functions for brain PET studies. Phys Med Biol 2004,49(6):1033–1054. 10.1088/0031-9155/49/6/013PubMedCrossRef
11.
go back to reference Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, et al.: Comparison of eight methods for the estimation of the image-derived input function in dynamic [(18)F]-FDG PET human brain studies. J Cereb Blood Flow Metab 2009,29(11):1825–1835. 10.1038/jcbfm.2009.93PubMedCrossRef Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, et al.: Comparison of eight methods for the estimation of the image-derived input function in dynamic [(18)F]-FDG PET human brain studies. J Cereb Blood Flow Metab 2009,29(11):1825–1835. 10.1038/jcbfm.2009.93PubMedCrossRef
12.
go back to reference Sundaram SK, Freedman NMT, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al.: Simplified kinetic analysis of tumor 18F-FDG uptake: a dynamic approach. J Nucl Med 2004,45(8):1328–1333.PubMed Sundaram SK, Freedman NMT, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al.: Simplified kinetic analysis of tumor 18F-FDG uptake: a dynamic approach. J Nucl Med 2004,45(8):1328–1333.PubMed
13.
go back to reference Bentourkia M: Kinetic modeling of PET data without blood sampling. IEEE 2005,52(3):697–702. Bentourkia M: Kinetic modeling of PET data without blood sampling. IEEE 2005,52(3):697–702.
14.
go back to reference Shields AF, Briston DA, Chandupatla S, Douglas KA, Lawhorn-Crews J, Collins JM, et al.: A simplified analysis of [ 18 F]3'-deoxy-3'-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging 2005,32(11):1269–1275.PubMedCrossRef Shields AF, Briston DA, Chandupatla S, Douglas KA, Lawhorn-Crews J, Collins JM, et al.: A simplified analysis of [ 18 F]3'-deoxy-3'-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging 2005,32(11):1269–1275.PubMedCrossRef
15.
go back to reference Cook GJ, Lodge MA, Marsden PK, Dynes A, Fogelman I: Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 1999,26(11):1424–1429. 10.1007/s002590050474PubMedCrossRef Cook GJ, Lodge MA, Marsden PK, Dynes A, Fogelman I: Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 1999,26(11):1424–1429. 10.1007/s002590050474PubMedCrossRef
16.
go back to reference Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al.: Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 1993,188(1):131–136.PubMedCrossRef Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al.: Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 1993,188(1):131–136.PubMedCrossRef
17.
go back to reference Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ: Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med 1997,24(3):299–304.PubMed Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ: Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med 1997,24(3):299–304.PubMed
18.
go back to reference Kissel J, Port RE, Zaers J, Bellemann ME, Strauss LG, Haberkorn U, et al.: Noninvasive determination of the arterial input function of an anticancer drug from dynamic PET scans using the population approach. Med Phys 1999,26(4):609–615. 10.1118/1.598560PubMedCrossRef Kissel J, Port RE, Zaers J, Bellemann ME, Strauss LG, Haberkorn U, et al.: Noninvasive determination of the arterial input function of an anticancer drug from dynamic PET scans using the population approach. Med Phys 1999,26(4):609–615. 10.1118/1.598560PubMedCrossRef
19.
go back to reference Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, et al.: Kinetic modeling of 3 '-deoxy-3 '-F-18-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 2008,49(12):2057–2066. 10.2967/jnumed.108.053215PubMedCrossRef Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, et al.: Kinetic modeling of 3 '-deoxy-3 '-F-18-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 2008,49(12):2057–2066. 10.2967/jnumed.108.053215PubMedCrossRef
20.
go back to reference Menda Y, Ponto LLB, Dornfeld KJ, Tewson TJ, Watkins GL, Schultz MK, et al.: Kinetic analysis of 3 '-deoxy-3 '-F-18-fluorothymidine (F-18-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med 2009,50(7):1028–1035. 10.2967/jnumed.108.058495PubMedCentralPubMedCrossRef Menda Y, Ponto LLB, Dornfeld KJ, Tewson TJ, Watkins GL, Schultz MK, et al.: Kinetic analysis of 3 '-deoxy-3 '-F-18-fluorothymidine (F-18-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med 2009,50(7):1028–1035. 10.2967/jnumed.108.058495PubMedCentralPubMedCrossRef
21.
go back to reference Visvikis D, Francis D, Mulligan R, Costa DC, Croasdale I, Luthra SK, et al.: Comparison of methodologies for the in vivo assessment of (FLT)-F-18 utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging 2004,31(2):169–178. 10.1007/s00259-003-1339-2PubMedCrossRef Visvikis D, Francis D, Mulligan R, Costa DC, Croasdale I, Luthra SK, et al.: Comparison of methodologies for the in vivo assessment of (FLT)-F-18 utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging 2004,31(2):169–178. 10.1007/s00259-003-1339-2PubMedCrossRef
22.
go back to reference de Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al.: Reproducibility of quantitative F-18–3'-deoxy-3'-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 2009,36(3):389–395. 10.1007/s00259-008-0960-5PubMedCrossRef de Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al.: Reproducibility of quantitative F-18–3'-deoxy-3'-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 2009,36(3):389–395. 10.1007/s00259-008-0960-5PubMedCrossRef
23.
go back to reference Backes H, Ullrich R, Neumaier B, Kracht L, Wienhard K, Jacobs AH: Noninvasive quantification of F-18-FLT human brain PET for the assessment of tumour proliferation in patients with high-grade glioma. Eur J Nucl Med Mol Imaging 2009,36(12):1960–1967. 10.1007/s00259-009-1244-4PubMedCentralPubMedCrossRef Backes H, Ullrich R, Neumaier B, Kracht L, Wienhard K, Jacobs AH: Noninvasive quantification of F-18-FLT human brain PET for the assessment of tumour proliferation in patients with high-grade glioma. Eur J Nucl Med Mol Imaging 2009,36(12):1960–1967. 10.1007/s00259-009-1244-4PubMedCentralPubMedCrossRef
24.
go back to reference Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO: Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3'-deoxy-3'-[ 18 F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 2007,34(9):1339–1347. 10.1007/s00259-007-0379-4PubMedCrossRef Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO: Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3'-deoxy-3'-[ 18 F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 2007,34(9):1339–1347. 10.1007/s00259-007-0379-4PubMedCrossRef
25.
go back to reference Coleman TF, Li Y: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. 1994,67(2):189–224. Coleman TF, Li Y: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. 1994,67(2):189–224.
26.
go back to reference Coleman TF, Li Y: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 1996, 6: 418–445. 10.1137/0806023CrossRef Coleman TF, Li Y: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 1996, 6: 418–445. 10.1137/0806023CrossRef
27.
go back to reference Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA: Kinetic modeling of 3'-deoxy-3'-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 2005,46(2):371–380.PubMed Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA: Kinetic modeling of 3'-deoxy-3'-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 2005,46(2):371–380.PubMed
28.
go back to reference Mankoff DA, Shields AF, Graham MM, Link JM, Krohn KA: A graphical analysis method to estimate blood-to-tissue transfer constants for tracers with labeled metabolites. J Nucl Med 1996,37(12):2049–2057.PubMed Mankoff DA, Shields AF, Graham MM, Link JM, Krohn KA: A graphical analysis method to estimate blood-to-tissue transfer constants for tracers with labeled metabolites. J Nucl Med 1996,37(12):2049–2057.PubMed
Metadata
Title
Evaluation of limited blood sampling population input approaches for kinetic quantification of [18F]fluorothymidine PET data
Authors
Kaiyumars B Contractor
Laura M Kenny
Charles R Coombes
Federico E Turkheimer
Eric O Aboagye
Lula Rosso
Publication date
01-12-2012
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2012
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/2191-219X-2-11

Other articles of this Issue 1/2012

EJNMMI Research 1/2012 Go to the issue