Skip to main content
Top
Published in: Neurological Sciences 8/2017

01-08-2017 | Original Article

Evaluation of inner retinal layers with optic coherence tomography in vigabatrin-exposed patients

Authors: Betül Tuğcu, Mesrure Köseoğlu Bitnel, Fatma Selin Kaya, Betül Tekin Güveli, Dilek Ataklı

Published in: Neurological Sciences | Issue 8/2017

Login to get access

Abstract

In order to reveal the underlying retinal pathology leading to dysfunction in vigabatrin-exposed patients, we aimed to evaluate the inner retinal layers encompassing ganglion cell complex (GCC) layer and inner plexiform layer with new generation optic coherence tomography (OCT). Fourteen patients with epilepsy and exposure to vigabatrin and 12 clinically normal individuals, constituting the control group, were included. Retinal images were obtained using spectral-domain OCT (Optovue RTVue Fourier domain). Nasal and superior quadrants of retinal nerve fiber layer (RNFL) were found to be significantly lower in the patient group compared to the controls (p < 0.01). No significant difference was shown in the thickness of GCC layer (p > 0.05). Foveal thickness was significantly higher in the patient group (p: 0.006), but no significant difference was found in perifoveal and parafoveal regions between groups (p > 0.05). The thickness of RNFL was found to be lower in vigabatrin-exposed patients without any reduction in GCC layer in the macular region. However, foveal thickness was found to be significantly higher compared to perifoveal and parafoveal macular regions in vigabatrin-exposed patients. In conclusion, OCT revealed reduced thickness of RNFL without any reduction in ganglion cell layer in our study. The objective quantitative assessment of OCT is a practical noninvasive method and it can have role in future monitoring of these patients.
Literature
1.
go back to reference Cross-Disorder Phenotype Group of the Psychiatric GWAS Consortium, Craddock N, Kendler K, Neale M, Nurnberger J, Purcell S, Rietschel M, Perlis R, Santangelo SL, Schulze TG, Smoller JW, Thapar A (2009) Dissecting the phenotype in genome-wide association studies of psychiatric illness. Br J Psychiatry 195(2):97–99CrossRefPubMedCentral Cross-Disorder Phenotype Group of the Psychiatric GWAS Consortium, Craddock N, Kendler K, Neale M, Nurnberger J, Purcell S, Rietschel M, Perlis R, Santangelo SL, Schulze TG, Smoller JW, Thapar A (2009) Dissecting the phenotype in genome-wide association studies of psychiatric illness. Br J Psychiatry 195(2):97–99CrossRefPubMedCentral
2.
go back to reference Hardus P, Verduin WM, Berendschot TT, Kamermans M, Postma G, Stilma JS et al (2001) The value of electrophysiology results in patients with epilepsy and vigabatrin associated visual field loss. Acta Ophthalmol Scand 79(2):169–174CrossRefPubMed Hardus P, Verduin WM, Berendschot TT, Kamermans M, Postma G, Stilma JS et al (2001) The value of electrophysiology results in patients with epilepsy and vigabatrin associated visual field loss. Acta Ophthalmol Scand 79(2):169–174CrossRefPubMed
3.
go back to reference Sills GJ, Butler E, Forrest G, Ratnaraj N, Patsalos PN, Brodie MJ (2003) Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina. Epilepsia 44(7):886–892CrossRefPubMed Sills GJ, Butler E, Forrest G, Ratnaraj N, Patsalos PN, Brodie MJ (2003) Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina. Epilepsia 44(7):886–892CrossRefPubMed
4.
go back to reference Ravindran J, Blumbergs P, Crompton J, Pietris G, Waddy H (2001) Visual field loss associated with vigabatrin: pathological correlations. J Neurol Neurosurg Psychiatry 70:787–789CrossRefPubMedPubMedCentral Ravindran J, Blumbergs P, Crompton J, Pietris G, Waddy H (2001) Visual field loss associated with vigabatrin: pathological correlations. J Neurol Neurosurg Psychiatry 70:787–789CrossRefPubMedPubMedCentral
5.
go back to reference Hawker MJ, Astbury NJ (2008) The ocular side effects of vigabatrin (Sabril): information and guidance for screening. Eye (Lond) 22(9):1097–1098CrossRef Hawker MJ, Astbury NJ (2008) The ocular side effects of vigabatrin (Sabril): information and guidance for screening. Eye (Lond) 22(9):1097–1098CrossRef
6.
go back to reference Harding GF, Wild JM, Robertson KA, Lawden MC, Betts TA, Barber C et al (2000) Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 41(11):1420–1431CrossRefPubMed Harding GF, Wild JM, Robertson KA, Lawden MC, Betts TA, Barber C et al (2000) Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 41(11):1420–1431CrossRefPubMed
7.
go back to reference Durnian JM, Clearkin LG (2008) Retinal nerve fibre layer characteristics with vigabatrin-associated visual field loss—could scanning laser polarimetry aid diagnosis? Eye (Lond) 22(4):559–563CrossRef Durnian JM, Clearkin LG (2008) Retinal nerve fibre layer characteristics with vigabatrin-associated visual field loss—could scanning laser polarimetry aid diagnosis? Eye (Lond) 22(4):559–563CrossRef
9.
go back to reference Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA et al (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 93(6):775–781CrossRefPubMedPubMedCentral Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA et al (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 93(6):775–781CrossRefPubMedPubMedCentral
10.
go back to reference Clayton LM, Dévilé M, Punte T, Kallis C, de Haan GJ, Sander JW et al (2011) Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann Neurol 69(5):845–854CrossRefPubMed Clayton LM, Dévilé M, Punte T, Kallis C, de Haan GJ, Sander JW et al (2011) Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann Neurol 69(5):845–854CrossRefPubMed
11.
go back to reference Wild JM, Robson CR, Jones AL, Cunliffe IA, Smith PE (2006) Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 47(3):917–924CrossRefPubMed Wild JM, Robson CR, Jones AL, Cunliffe IA, Smith PE (2006) Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 47(3):917–924CrossRefPubMed
12.
go back to reference Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ (2004) Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology 111(10):1935–1942CrossRefPubMed Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ (2004) Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology 111(10):1935–1942CrossRefPubMed
13.
go back to reference Lawthom C, Smith PE, Wild JM (2009) Nasal retinal nerve fiber layer attenuation: a biomarker for vigabatrin toxicity. Ophthalmology 116:565–571CrossRefPubMed Lawthom C, Smith PE, Wild JM (2009) Nasal retinal nerve fiber layer attenuation: a biomarker for vigabatrin toxicity. Ophthalmology 116:565–571CrossRefPubMed
14.
go back to reference Jammoul F, Dégardin J, Pain D, Gondouin P, Simonutti M, Dubus E et al (2010) Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci 43(4):414–421CrossRefPubMedPubMedCentral Jammoul F, Dégardin J, Pain D, Gondouin P, Simonutti M, Dubus E et al (2010) Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci 43(4):414–421CrossRefPubMedPubMedCentral
15.
go back to reference Wang QP, Jammoul F, Duboc A, Gong J, Simonutti M, Dubus E et al (2008) Treatment of epilepsy: the GABA-transaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. Eur J Neurosci 27(8):2177–2187CrossRefPubMedPubMedCentral Wang QP, Jammoul F, Duboc A, Gong J, Simonutti M, Dubus E et al (2008) Treatment of epilepsy: the GABA-transaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. Eur J Neurosci 27(8):2177–2187CrossRefPubMedPubMedCentral
16.
go back to reference Izumi Y, Ishikawa M, Benz AM, Izumi M, Zorumski CF, Thio LL (2004) Acute vigabatrin retinotoxicity in albino rats depends on light but not GABA. Epilepsia 45(9):1043–1048CrossRefPubMed Izumi Y, Ishikawa M, Benz AM, Izumi M, Zorumski CF, Thio LL (2004) Acute vigabatrin retinotoxicity in albino rats depends on light but not GABA. Epilepsia 45(9):1043–1048CrossRefPubMed
17.
go back to reference Krauss GL, Johnson MA, Miller NR (1998) Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology 50:614–618CrossRefPubMed Krauss GL, Johnson MA, Miller NR (1998) Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology 50:614–618CrossRefPubMed
19.
go back to reference Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA et al (2004) Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 55(5):695–705CrossRefPubMed Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA et al (2004) Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 55(5):695–705CrossRefPubMed
20.
go back to reference Hébert-Lalonde N, Carmant L, Major P, Roy MS, Lassonde M, Saint-Amour D (2016) Electrophysiological evidences of visual field alterations in children exposed to vigabatrin early in life. Pediatr Neurol 59:47–53CrossRefPubMed Hébert-Lalonde N, Carmant L, Major P, Roy MS, Lassonde M, Saint-Amour D (2016) Electrophysiological evidences of visual field alterations in children exposed to vigabatrin early in life. Pediatr Neurol 59:47–53CrossRefPubMed
21.
go back to reference Coupland SG, Zackon DH, Leonard BC, Ross TM (2001) Vigabatrin effect on inner retinal function. Ophthalmology 108(8):1493–1496CrossRefPubMed Coupland SG, Zackon DH, Leonard BC, Ross TM (2001) Vigabatrin effect on inner retinal function. Ophthalmology 108(8):1493–1496CrossRefPubMed
Metadata
Title
Evaluation of inner retinal layers with optic coherence tomography in vigabatrin-exposed patients
Authors
Betül Tuğcu
Mesrure Köseoğlu Bitnel
Fatma Selin Kaya
Betül Tekin Güveli
Dilek Ataklı
Publication date
01-08-2017
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 8/2017
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-017-2971-0

Other articles of this Issue 8/2017

Neurological Sciences 8/2017 Go to the issue