Skip to main content
Top
Published in: Radiation Oncology 1/2014

Open Access 01-12-2014 | Research

Evaluation of high-fidelity simulation training in radiation oncology using an outcomes logic model

Authors: Meredith Giuliani, Caitlin Gillan, Olive Wong, Nicole Harnett, Emily Milne, Doug Moseley, Robert Thompson, Pamela Catton, Jean-Pierre Bissonnette

Published in: Radiation Oncology | Issue 1/2014

Login to get access

Abstract

Purpose

To evaluate the feasibility and educational value of high-fidelity, interprofessional team-based simulation in radiation oncology.

Methods

The simulation event was conducted in a radiation oncology department during a non-clinical day. It involved 5 simulation scenarios that were run over three 105 minute timeslots in a single day. High-acuity, low-frequency clinical situations were selected and included HDR brachytherapy emergency, 4D CT artifact management, pediatric emergency clinical mark-up, electron scalp trial set-up and a cone beam CT misregistration incident. A purposive sample of a minimum of 20 trainees was required to assess recruitment feasibility. A faculty radiation oncologist (RO), medical physicist (MP) or radiation therapist (RTT), facilitated each case. Participants completed a pre event survey of demographic data and motivation for participation. A post event survey collected perceptions of familiarity with the clinical content, comfort with interprofessional practice, and event satisfaction, scored on a 1–10 scale in terms of clinical knowledge, clinical decision making, clinical skills, exposure to other trainees and interprofessional communication. Means and standard deviations were calculated.

Results

Twenty-one trainees participated including 6 ROs (29%), 6 MPs (29%), and 9 RTTs (43%). All 12 cases (100%) were completed within the allocated 105 minutes. Nine faculty facilitators, (3MP, 2 RO, 4 RTTs) were required for 405 minutes each. Additional costs associated with this event were 154 hours to build the high fidelity scenarios, 2 standardized patients (SPs) for a total of 15.5 hours, and consumables.The mean (±SD) educational value score reported by participants with respect to clinical knowledge was 8.9 (1.1), clinical decision making 8.9 (1.3), clinical skills 8.9 (1.1), exposure to other trainees 9.1 (2.3) and interprofessional communication 9.1 (1.0). Fifteen (71%) participants reported the cases were of an appropriate complexity. The importance of further simulation events was rated highly at 9.1/10.

Conclusions

High-fidelity simulation training is feasible and effective in a radiation oncology context. However, such educational activities require significant resources, including personnel and equipment.
Literature
1.
go back to reference Giuliani ME, Gillan C, Milne RA, Uchino M, Millar BA, Catton P: Determining an imaging literacy curriculum for radiation oncologists: An international delphi study. Int J Radiat Oncol Biol Phys 2014, 88: 961-966.CrossRefPubMed Giuliani ME, Gillan C, Milne RA, Uchino M, Millar BA, Catton P: Determining an imaging literacy curriculum for radiation oncologists: An international delphi study. Int J Radiat Oncol Biol Phys 2014, 88: 961-966.CrossRefPubMed
2.
go back to reference Gillan C, Wiljer D, Harnett N, Briggs K, Catton P: Changing stress while stressing change: The role of interprofessional education in mediating stress in the introduction of a transformative technology. J Interprof Care 2010, 24: 710-721.CrossRefPubMed Gillan C, Wiljer D, Harnett N, Briggs K, Catton P: Changing stress while stressing change: The role of interprofessional education in mediating stress in the introduction of a transformative technology. J Interprof Care 2010, 24: 710-721.CrossRefPubMed
3.
go back to reference Chakraborti C, Boonyasai RT, Wright SM, Kern DE: A systematic review of teamwork training interventions in medical student and resident education. J Gen Intern Med 2008, 23: 846-853.PubMedCentralCrossRefPubMed Chakraborti C, Boonyasai RT, Wright SM, Kern DE: A systematic review of teamwork training interventions in medical student and resident education. J Gen Intern Med 2008, 23: 846-853.PubMedCentralCrossRefPubMed
4.
go back to reference Ziv A, Ben-David S, Ziv M: Simulation based medical education: An opportunity to learn from errors. Med Teach 2005, 27: 193-199.CrossRefPubMed Ziv A, Ben-David S, Ziv M: Simulation based medical education: An opportunity to learn from errors. Med Teach 2005, 27: 193-199.CrossRefPubMed
5.
go back to reference Buckley CE, Kavanagh DO, Traynor O, Neary PC: Is the skillset obtained in surgical simulation transferable to the operating theatre? Am J Surg 2014, 207: 146-157.CrossRefPubMed Buckley CE, Kavanagh DO, Traynor O, Neary PC: Is the skillset obtained in surgical simulation transferable to the operating theatre? Am J Surg 2014, 207: 146-157.CrossRefPubMed
6.
go back to reference Paige JT, Garbee DD, Kozmenko V, Yu Q, Kozmenko L, Yang T, Bonanno L, Swartz W: Getting a head start: High-fidelity, simulation-based operating room team training of interprofessional students. J Am Coll Surg 2014, 218: 140-149.CrossRefPubMed Paige JT, Garbee DD, Kozmenko V, Yu Q, Kozmenko L, Yang T, Bonanno L, Swartz W: Getting a head start: High-fidelity, simulation-based operating room team training of interprofessional students. J Am Coll Surg 2014, 218: 140-149.CrossRefPubMed
7.
go back to reference Reuben DB, Levy-Storms L, Yee MN, Lee M, Cole K, Waite M, Nichols L, Frank JC: Disciplinary split: A threat to geriatrics interdisciplinary team training. J Am Geriatr Soc 2004, 52: 1000-1006.CrossRefPubMed Reuben DB, Levy-Storms L, Yee MN, Lee M, Cole K, Waite M, Nichols L, Frank JC: Disciplinary split: A threat to geriatrics interdisciplinary team training. J Am Geriatr Soc 2004, 52: 1000-1006.CrossRefPubMed
11.
go back to reference Armstrong EG, Barsion SJ: Using an outcomes-logic-model approach to evaluate a faculty development program for medical educators. Acad Med 2006, 81: 483-488.CrossRefPubMed Armstrong EG, Barsion SJ: Using an outcomes-logic-model approach to evaluate a faculty development program for medical educators. Acad Med 2006, 81: 483-488.CrossRefPubMed
12.
go back to reference Hyer K, Skinner JH, Kane RL, Howe JL, Whitelaw N, Wilson N, Flaherty E, Halstead L, Fulmer T: Using scripted video to assess interdisciplinary team effectiveness training outcomes. Gerontol Geriatr Educ 2003, 24: 75-91.CrossRefPubMed Hyer K, Skinner JH, Kane RL, Howe JL, Whitelaw N, Wilson N, Flaherty E, Halstead L, Fulmer T: Using scripted video to assess interdisciplinary team effectiveness training outcomes. Gerontol Geriatr Educ 2003, 24: 75-91.CrossRefPubMed
13.
go back to reference Parsell G, Bligh J: The development of a questionnaire to assess the readiness of health care students for interprofessional learning (ripls). Med Educ 1999, 33: 95-100.CrossRefPubMed Parsell G, Bligh J: The development of a questionnaire to assess the readiness of health care students for interprofessional learning (ripls). Med Educ 1999, 33: 95-100.CrossRefPubMed
14.
go back to reference Pollard KC, Miers ME, Gilchrist M: Collaborative learning for collaborative working? Initial findings from a longitudinal study of health and social care students. Health Soc Care Community 2004, 12: 346-358.CrossRefPubMed Pollard KC, Miers ME, Gilchrist M: Collaborative learning for collaborative working? Initial findings from a longitudinal study of health and social care students. Health Soc Care Community 2004, 12: 346-358.CrossRefPubMed
15.
go back to reference J.F. S: Development and Psychometric Testing of a Collaborative Behaviour Scale. San Diego, CA: University of San Diego; 1989. J.F. S: Development and Psychometric Testing of a Collaborative Behaviour Scale. San Diego, CA: University of San Diego; 1989.
16.
go back to reference Bujold A, Craig T, Jaffray D, Dawson LA: Image-guided radiotherapy: Has it influenced patient outcomes? Semin Radiat Oncol 2012, 22: 50-61.CrossRefPubMed Bujold A, Craig T, Jaffray D, Dawson LA: Image-guided radiotherapy: Has it influenced patient outcomes? Semin Radiat Oncol 2012, 22: 50-61.CrossRefPubMed
17.
go back to reference Jaffray DA: Image-guided radiotherapy: From current concept to future perspectives. Nat Rev Clin Oncol 2012, 9: 688-699.CrossRefPubMed Jaffray DA: Image-guided radiotherapy: From current concept to future perspectives. Nat Rev Clin Oncol 2012, 9: 688-699.CrossRefPubMed
18.
go back to reference Frank JR, Snell L, Sherbino J: Draft Canmeds 2015 Milestones Guide – may 2014. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2014. Frank JR, Snell L, Sherbino J: Draft Canmeds 2015 Milestones Guide – may 2014. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2014.
19.
go back to reference J C. Crossing the quality chiasm: A New Health System for the 21st Century. Washington, DC: National Academy Press; 2001. J C. Crossing the quality chiasm: A New Health System for the 21st Century. Washington, DC: National Academy Press; 2001.
20.
go back to reference Frenk J, Chen L, Bhutta ZA, Cohen J, Crisp N, Evans T, Fineberg H, Garcia P, Ke Y, Kelley P, Kistnasamy B, Meleis A, Naylor D, Pablos-Mendez A, Reddy S, Scrimshaw S, Sepulveda J, Serwadda D, Zurayk H: Health professionals for a new century: Transforming education to strengthen health systems in an interdependent world. Lancet 2010, 376: 1923-1958.CrossRefPubMed Frenk J, Chen L, Bhutta ZA, Cohen J, Crisp N, Evans T, Fineberg H, Garcia P, Ke Y, Kelley P, Kistnasamy B, Meleis A, Naylor D, Pablos-Mendez A, Reddy S, Scrimshaw S, Sepulveda J, Serwadda D, Zurayk H: Health professionals for a new century: Transforming education to strengthen health systems in an interdependent world. Lancet 2010, 376: 1923-1958.CrossRefPubMed
21.
go back to reference Liang MI, McCann GA, Rath KS, Backes FJ, Cansino C, Salani R: Training the next generation of robotic surgeons using guided mentorship: A randomized controlled trial. J Minim Invasive Gynecol 2014. doi:10.1016/j.jmig.2014.05.011. [Epub ahead of print] Liang MI, McCann GA, Rath KS, Backes FJ, Cansino C, Salani R: Training the next generation of robotic surgeons using guided mentorship: A randomized controlled trial. J Minim Invasive Gynecol 2014. doi:10.1016/j.jmig.2014.05.011. [Epub ahead of print]
22.
go back to reference Dawe SR, Pena GN, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, Maddern GJ: Systematic review of skills transfer after surgical simulation-based training. Br J Surg 2014,101(9):1063-1076. doi:10.1002/bjs.9482. Epub 2014 May 15CrossRefPubMed Dawe SR, Pena GN, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, Maddern GJ: Systematic review of skills transfer after surgical simulation-based training. Br J Surg 2014,101(9):1063-1076. doi:10.1002/bjs.9482. Epub 2014 May 15CrossRefPubMed
Metadata
Title
Evaluation of high-fidelity simulation training in radiation oncology using an outcomes logic model
Authors
Meredith Giuliani
Caitlin Gillan
Olive Wong
Nicole Harnett
Emily Milne
Doug Moseley
Robert Thompson
Pamela Catton
Jean-Pierre Bissonnette
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2014
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-9-189

Other articles of this Issue 1/2014

Radiation Oncology 1/2014 Go to the issue