Skip to main content
Top
Published in: World Journal of Emergency Surgery 1/2018

Open Access 01-12-2018 | Research article

Evaluation of capillary leakage after vasopressin resuscitation in a hemorrhagic shock model

Authors: Roberto Bini, Osvaldo Chiara, Stefania Cimbanassi, Giorgio Olivero, Antonella Trombetta, Paolo Cotogni

Published in: World Journal of Emergency Surgery | Issue 1/2018

Login to get access

Abstract

Background

Hemorrhagic shock (HS) is a major threat to patients with trauma and spontaneous bleeding. The aim of the study was to investigate early effects of vasopressin on metabolic and hemodynamic parameters and endothelium permeability by measuring capillary leakage compared to those of other resuscitation strategies in a HS model.

Methods

Forty-five Sprague-Dawley rats were randomized into five groups: S group (n = 5), sham-operated rats without shock or resuscitation; HS group (n = 10), HS and no resuscitation; RL group (n = 10), HS and resuscitation with Ringer’s lactate (RL); RLB group (n = 10), HS and resuscitation with two-third shed blood plus RL; and vasopressin group (n = 10), HS and resuscitation with RL, followed by continuous infusion of 0.04 U/kg/min vasopressin. The effects of resuscitation on hemodynamic parameters [mean arterial pressure (MAP), superior mesenteric artery blood flow (MBF), and mesenteric vascular resistances (MVR)], arterial blood gases, bicarbonate, base deficit, and lactate levels as well as on capillary leakage in the lung, ileum, and kidney were investigated. Capillary leakage was evaluated with Evans blue dye extravasation.

Results

In the vasopressin group, the MAP was higher than in the RL and RLB groups (p < 0.001), while MBF was decreased (p < 0.001). MVR were increased only in the vasopressin group (p < 0.001). Capillary leakage was increased in the lungs of the animals in the vasopressin group compared to that in the lungs of animals in the RLB group (p < 0.05); this increase was associated with the lowest partial pressure of oxygen (p < 0.05). Conversely, decreased capillary leakage was observed with vasopressin in the ileum (p < 0.05). Increased capillary leakage was observed in the kidney in the RLB and vasopressin groups (p < 0.05). Lastly, vasopressin use was associated with higher base deficit and lactate levels when compared to the RL and RLB groups (p < 0.001).

Conclusion

Although vasopressin was proposed as a vasoactive drug for provisional hemodynamic optimization in the early phase of HS resuscitation, the overall findings of this experimental study focus on the possible critical side effects of vasopressin on metabolic parameters and endothelium permeability.
Literature
1.
go back to reference Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11.CrossRefPubMed Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11.CrossRefPubMed
2.
go back to reference Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.CrossRefPubMedPubMedCentral Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.CrossRefPubMedPubMedCentral
3.
4.
go back to reference Morales D, Madigan J, Cullinane S, Chen J, Heath M, Oz M, et al. Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. Circulation. 1999;100:226–9.CrossRefPubMed Morales D, Madigan J, Cullinane S, Chen J, Heath M, Oz M, et al. Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. Circulation. 1999;100:226–9.CrossRefPubMed
5.
go back to reference Voelckel WG, Raedler C, Wenzel V, Lindner KH, Krismer AC, Schmittinger CA, et al. Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs. Crit Care Med. 2003;31:1286–7.CrossRef Voelckel WG, Raedler C, Wenzel V, Lindner KH, Krismer AC, Schmittinger CA, et al. Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs. Crit Care Med. 2003;31:1286–7.CrossRef
6.
go back to reference Stadlbauer KH, Wagner-Berger HG, Raedler C, Voelckel WG, Wenzel V, Krismer AC, et al. Vasopressin, but not fluid resuscitation, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology. 2003;98:699–704.CrossRefPubMed Stadlbauer KH, Wagner-Berger HG, Raedler C, Voelckel WG, Wenzel V, Krismer AC, et al. Vasopressin, but not fluid resuscitation, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology. 2003;98:699–704.CrossRefPubMed
7.
go back to reference Dünser MW, Mayr AJ, Tür A, Pajk W, Barbara F, Knotzer H, et al. Ischemic skin lesions as complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31:1394–8.CrossRefPubMed Dünser MW, Mayr AJ, Tür A, Pajk W, Barbara F, Knotzer H, et al. Ischemic skin lesions as complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31:1394–8.CrossRefPubMed
8.
go back to reference Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64:9–14.CrossRefPubMed Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64:9–14.CrossRefPubMed
9.
go back to reference Collier B, Dossett L, Mann M, Cotton B, Guillamondegui O, Diaz J, et al. Vasopressin use is associated with death in acute trauma patients with shock. J Crit Care. 2010;25:173.e9–e14.CrossRef Collier B, Dossett L, Mann M, Cotton B, Guillamondegui O, Diaz J, et al. Vasopressin use is associated with death in acute trauma patients with shock. J Crit Care. 2010;25:173.e9–e14.CrossRef
10.
go back to reference Brøchner AC, Toft P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scand J Trauma Resusc Emerg Med. 2009;17:43.CrossRefPubMedPubMedCentral Brøchner AC, Toft P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scand J Trauma Resusc Emerg Med. 2009;17:43.CrossRefPubMedPubMedCentral
11.
go back to reference Shenkar R, Coulson WF, Abraham E. Hemorrhage and resuscitation induce alterations in cytokine expression and the development of acute lung injury. Am J Respir Cell Mol Biol. 1994;10:290–7.CrossRefPubMed Shenkar R, Coulson WF, Abraham E. Hemorrhage and resuscitation induce alterations in cytokine expression and the development of acute lung injury. Am J Respir Cell Mol Biol. 1994;10:290–7.CrossRefPubMed
12.
go back to reference Douzinas EE, Livaditi O, Tasoulis MK, Prigouris P, Bakos D, Goutas N, et al. Nitrosative and oxidative stresses contribute to post-ischemic liver injury following severe hemorrhagic shock: the role of hypoxemic resuscitation. PLoS One. 2012;7:e32968.CrossRefPubMedPubMedCentral Douzinas EE, Livaditi O, Tasoulis MK, Prigouris P, Bakos D, Goutas N, et al. Nitrosative and oxidative stresses contribute to post-ischemic liver injury following severe hemorrhagic shock: the role of hypoxemic resuscitation. PLoS One. 2012;7:e32968.CrossRefPubMedPubMedCentral
13.
go back to reference Oda M, Han JY, Nakamura M. Endothelial cell dysfunction in microvasculature: relevance to disease processes. Clin Hemorheol Microcirc. 2000;23:199–211.PubMed Oda M, Han JY, Nakamura M. Endothelial cell dysfunction in microvasculature: relevance to disease processes. Clin Hemorheol Microcirc. 2000;23:199–211.PubMed
14.
go back to reference Fishel RS, Are C, Barbul A. Vessel injury and capillary leak. Crit Care Med. 2003;31(8Suppl):S502–11.CrossRefPubMed Fishel RS, Are C, Barbul A. Vessel injury and capillary leak. Crit Care Med. 2003;31(8Suppl):S502–11.CrossRefPubMed
15.
go back to reference Bini R, Cursio R, Belhacene N, Giudicelli J, Ferruà B, Olivero G, et al. Effect of caspase inhibition on thymic apoptosis in hemorrhagic shock. J Investig Surg. 2007;20:97–103.CrossRef Bini R, Cursio R, Belhacene N, Giudicelli J, Ferruà B, Olivero G, et al. Effect of caspase inhibition on thymic apoptosis in hemorrhagic shock. J Investig Surg. 2007;20:97–103.CrossRef
16.
go back to reference Schumacher J, Binkowski K, Dendorfer A, Klotz KF. Organ-specific extravasation of albumin-bound Evans blue during nonresuscitated hemorrhagic shock in rats. Shock. 2003;20:565–8.CrossRefPubMed Schumacher J, Binkowski K, Dendorfer A, Klotz KF. Organ-specific extravasation of albumin-bound Evans blue during nonresuscitated hemorrhagic shock in rats. Shock. 2003;20:565–8.CrossRefPubMed
17.
go back to reference Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma. 2003;55:571–89.CrossRefPubMed Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma. 2003;55:571–89.CrossRefPubMed
18.
go back to reference Rhee P, Koustova E, Alam HB. Searching for the optimal resuscitation method: recommendations for the initial fluid resuscitation of combat casualties. J Trauma. 2003;54(5 Suppl):S52–62.PubMed Rhee P, Koustova E, Alam HB. Searching for the optimal resuscitation method: recommendations for the initial fluid resuscitation of combat casualties. J Trauma. 2003;54(5 Suppl):S52–62.PubMed
19.
go back to reference Solomonov E, Hirsh M, Yahiya A, Krausz M. The effect of vigorous fluid resuscitation in uncontrolled hemorrhagic shock after massive splenic injury. Crit Care Med. 2000;28:749–54.CrossRefPubMed Solomonov E, Hirsh M, Yahiya A, Krausz M. The effect of vigorous fluid resuscitation in uncontrolled hemorrhagic shock after massive splenic injury. Crit Care Med. 2000;28:749–54.CrossRefPubMed
20.
go back to reference Lucas CE, Ledgerwood AM. Physiology of colloid-supplemented resuscitation from shock. J Trauma. 2003;54(5 Suppl):S75–81.PubMed Lucas CE, Ledgerwood AM. Physiology of colloid-supplemented resuscitation from shock. J Trauma. 2003;54(5 Suppl):S75–81.PubMed
21.
go back to reference Liu L, Tian K, Xue M, Zhu Y, Lan D, Peng X, et al. Small doses of arginine vasopressin in combination with norepinephrine “buy” time for definitive treatment for uncontrolled hemorrhagic shock in rat. Shock. 2013;40:398–406.CrossRefPubMed Liu L, Tian K, Xue M, Zhu Y, Lan D, Peng X, et al. Small doses of arginine vasopressin in combination with norepinephrine “buy” time for definitive treatment for uncontrolled hemorrhagic shock in rat. Shock. 2013;40:398–406.CrossRefPubMed
22.
go back to reference Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52:1141–6.CrossRefPubMed Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52:1141–6.CrossRefPubMed
23.
go back to reference Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331:1105–9.CrossRefPubMed Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331:1105–9.CrossRefPubMed
24.
go back to reference Stadlbauer KH, Wenzel V, Krismer AC, Voelckel WG, Lindner KH. Vasopressin during uncontrolled hemorrhagic shock: less bleeding below the diaphragm, more perfusion above. Anesth Analg. 2005;101:830–2.CrossRefPubMed Stadlbauer KH, Wenzel V, Krismer AC, Voelckel WG, Lindner KH. Vasopressin during uncontrolled hemorrhagic shock: less bleeding below the diaphragm, more perfusion above. Anesth Analg. 2005;101:830–2.CrossRefPubMed
25.
go back to reference Malay MB, Ashton JL, Dahl K, Savage EB, Burchell SA, Ashton RC Jr, et al. Heterogeneity of the vasoconstrictor effect of vasopressin in septic shock. Crit Care Med. 2004;32:1327–31.CrossRefPubMed Malay MB, Ashton JL, Dahl K, Savage EB, Burchell SA, Ashton RC Jr, et al. Heterogeneity of the vasoconstrictor effect of vasopressin in septic shock. Crit Care Med. 2004;32:1327–31.CrossRefPubMed
26.
go back to reference Reinhart K, Bayer O, Brunkhorst F, Meisner M. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med. 2002;30(5 Suppl):S302–12.CrossRefPubMed Reinhart K, Bayer O, Brunkhorst F, Meisner M. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med. 2002;30(5 Suppl):S302–12.CrossRefPubMed
27.
go back to reference Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury. Shock. 2004;21:401–9.CrossRefPubMed Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury. Shock. 2004;21:401–9.CrossRefPubMed
28.
go back to reference van Meurs M, Wulfert FM, Jongman RM, Schipper M, Houwertjes MC, Vaneker M, et al. Hemorrhagic shock-induced endothelial cell activation in a spontaneous breathing and a mechanical ventilation hemorrhagic shock model is induced by a proinflammatory response and not by hypoxia. Anesthesiology. 2011;115:474–82.CrossRefPubMed van Meurs M, Wulfert FM, Jongman RM, Schipper M, Houwertjes MC, Vaneker M, et al. Hemorrhagic shock-induced endothelial cell activation in a spontaneous breathing and a mechanical ventilation hemorrhagic shock model is induced by a proinflammatory response and not by hypoxia. Anesthesiology. 2011;115:474–82.CrossRefPubMed
29.
go back to reference van Meurs M, Wulfert FM, Knol AJ, De Haes A, Houwertjes M, Aarts LP, et al. Early organ-specific endothelial activation during hemorrhagic shock and resuscitation. Shock. 2008;29:291–9.PubMed van Meurs M, Wulfert FM, Knol AJ, De Haes A, Houwertjes M, Aarts LP, et al. Early organ-specific endothelial activation during hemorrhagic shock and resuscitation. Shock. 2008;29:291–9.PubMed
30.
go back to reference Farand P, Hamel M, Lauzier F, Plante GE, Lesur O. Review article: organ perfusion/permeability related effects of norepinephrine and vasopressin in sepsis. Can J Anesth. 2006;53:934–46.CrossRefPubMed Farand P, Hamel M, Lauzier F, Plante GE, Lesur O. Review article: organ perfusion/permeability related effects of norepinephrine and vasopressin in sepsis. Can J Anesth. 2006;53:934–46.CrossRefPubMed
31.
go back to reference Lee CC, Lee MT, Chang SS, Lee SH, Huang YC, Yo CH, et al. A comparison of vasopressin, terlipressin, and lactated ringers for resuscitation of uncontrolled hemorrhagic shock in an animal model. PLoS One. 2014;9:e95821.CrossRefPubMedPubMedCentral Lee CC, Lee MT, Chang SS, Lee SH, Huang YC, Yo CH, et al. A comparison of vasopressin, terlipressin, and lactated ringers for resuscitation of uncontrolled hemorrhagic shock in an animal model. PLoS One. 2014;9:e95821.CrossRefPubMedPubMedCentral
32.
go back to reference Feinstein AJ, Cohn SM, King DR, Sanui M, Proctor KG. Early vasopressin improves short-term survival after pulmonary contusion. J Trauma. 2005;59:876–82.CrossRefPubMed Feinstein AJ, Cohn SM, King DR, Sanui M, Proctor KG. Early vasopressin improves short-term survival after pulmonary contusion. J Trauma. 2005;59:876–82.CrossRefPubMed
33.
go back to reference Stadlbauer KH, Wenzel V, Wagner-Berger HG, Krismer AC, Konigsrainer A, Voelckel WG, et al. An observational study of vasopressin infusion during uncontrolled haemorrhagic shock in a porcine trauma model: effects on bowel function. Resuscitation. 2007;72:145–8.CrossRefPubMed Stadlbauer KH, Wenzel V, Wagner-Berger HG, Krismer AC, Konigsrainer A, Voelckel WG, et al. An observational study of vasopressin infusion during uncontrolled haemorrhagic shock in a porcine trauma model: effects on bowel function. Resuscitation. 2007;72:145–8.CrossRefPubMed
34.
go back to reference Cossu AP, Mura P, De Giudici LM, Puddu D, Pasin L, Evangelista M, et al. Vasopressin in hemorrhagic shock: a systematic review and meta-analysis of randomized animal trials. Biomed Res Int. 2014;2014:421291.PubMedPubMedCentral Cossu AP, Mura P, De Giudici LM, Puddu D, Pasin L, Evangelista M, et al. Vasopressin in hemorrhagic shock: a systematic review and meta-analysis of randomized animal trials. Biomed Res Int. 2014;2014:421291.PubMedPubMedCentral
35.
go back to reference Raedler C, Voelckel WG, Wenzel V, Krismer AC, Schmittinger CA, Herff H, et al. Treatment of uncontrolled hemorrhagic shock after liver trauma: fatal effects of fluid resuscitation versus improved outcome after vasopressin. Anesth Analg. 2004;98:1759–66.CrossRefPubMed Raedler C, Voelckel WG, Wenzel V, Krismer AC, Schmittinger CA, Herff H, et al. Treatment of uncontrolled hemorrhagic shock after liver trauma: fatal effects of fluid resuscitation versus improved outcome after vasopressin. Anesth Analg. 2004;98:1759–66.CrossRefPubMed
36.
go back to reference Voelckel WG, Lindner KH, Wenzel V, Bonatti J, Hangler H, Frimmel C, et al. Effects of vasopressin and epinephrine on splanchnic blood flow and renal function during and after cardiopulmonary resuscitation in pigs. Crit Care Med. 2000;28:1083–8.CrossRefPubMed Voelckel WG, Lindner KH, Wenzel V, Bonatti J, Hangler H, Frimmel C, et al. Effects of vasopressin and epinephrine on splanchnic blood flow and renal function during and after cardiopulmonary resuscitation in pigs. Crit Care Med. 2000;28:1083–8.CrossRefPubMed
37.
go back to reference Hinder F, Stubbe HD, Van Aken H, Baba HA, Jahn UR, Brodner G, et al. Early multiple organ failure after recurrent endotoxemia in the presence of vasoconstrictor-masked hypovolemia. Crit Care Med. 2003;31:903–9.CrossRefPubMed Hinder F, Stubbe HD, Van Aken H, Baba HA, Jahn UR, Brodner G, et al. Early multiple organ failure after recurrent endotoxemia in the presence of vasoconstrictor-masked hypovolemia. Crit Care Med. 2003;31:903–9.CrossRefPubMed
38.
go back to reference Johnson KB, Pearce FJ, Jeffreys N, McJames SW, Cluff M. Impact of vasopressin on hemodynamic and metabolic function in the decompensatory phase of hemorrhagic shock. J Cardiothorac Vasc Anesth. 2006;20:167–72.CrossRefPubMed Johnson KB, Pearce FJ, Jeffreys N, McJames SW, Cluff M. Impact of vasopressin on hemodynamic and metabolic function in the decompensatory phase of hemorrhagic shock. J Cardiothorac Vasc Anesth. 2006;20:167–72.CrossRefPubMed
39.
go back to reference Beloncle F, Mezia F, Lerolle N, Radermacher P, Asfar P. Does vasopressor therapy have an indication in hemorrhagic shock? Ann Intensive Care. 2013;3:13.CrossRefPubMedPubMedCentral Beloncle F, Mezia F, Lerolle N, Radermacher P, Asfar P. Does vasopressor therapy have an indication in hemorrhagic shock? Ann Intensive Care. 2013;3:13.CrossRefPubMedPubMedCentral
40.
go back to reference Soller B, Zou F, Prince MD, Dubick MA, Sondeen JL. Comparison of noninvasive pH and blood lactate as predictors of mortality in a swine hemorrhagic shock with restricted volume resuscitation model. Shock. 2015;44(Suppl 1):90–5.CrossRefPubMedPubMedCentral Soller B, Zou F, Prince MD, Dubick MA, Sondeen JL. Comparison of noninvasive pH and blood lactate as predictors of mortality in a swine hemorrhagic shock with restricted volume resuscitation model. Shock. 2015;44(Suppl 1):90–5.CrossRefPubMedPubMedCentral
41.
go back to reference Davis JW, Parks SN, Kaups KL, Gladen HE, O’Donnell-Nicol S. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma. 1996;41:769–74.CrossRefPubMed Davis JW, Parks SN, Kaups KL, Gladen HE, O’Donnell-Nicol S. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma. 1996;41:769–74.CrossRefPubMed
42.
go back to reference Rixen D, Raum M, Bouillon B, Lefering R, Neugebauer E. Base deficit development and its prognostic significance in posttrauma critical illness: an analysis by the trauma registry of the Deutsche Gesellschaft für Unfallchirurgie. Shock. 2001;15:83–9.CrossRefPubMed Rixen D, Raum M, Bouillon B, Lefering R, Neugebauer E. Base deficit development and its prognostic significance in posttrauma critical illness: an analysis by the trauma registry of the Deutsche Gesellschaft für Unfallchirurgie. Shock. 2001;15:83–9.CrossRefPubMed
43.
go back to reference Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 2005;9:441–53.CrossRefPubMedPubMedCentral Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 2005;9:441–53.CrossRefPubMedPubMedCentral
44.
go back to reference Mutschler M, Nienaber U, Brockamp T, Wafaisade A, Fabian T, Paffrath T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the Trauma Register DGU®. Crit Care. 2013;17:R42.CrossRefPubMedPubMedCentral Mutschler M, Nienaber U, Brockamp T, Wafaisade A, Fabian T, Paffrath T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the Trauma Register DGU®. Crit Care. 2013;17:R42.CrossRefPubMedPubMedCentral
46.
go back to reference Cohn SM, McCarthy J, Stewart RM, Jonas RB, Dent DL, Michalek JE. Impact of low-dose vasopressin on trauma outcome: prospective randomized study. World J Surg. 2011;35:430–9.CrossRefPubMed Cohn SM, McCarthy J, Stewart RM, Jonas RB, Dent DL, Michalek JE. Impact of low-dose vasopressin on trauma outcome: prospective randomized study. World J Surg. 2011;35:430–9.CrossRefPubMed
Metadata
Title
Evaluation of capillary leakage after vasopressin resuscitation in a hemorrhagic shock model
Authors
Roberto Bini
Osvaldo Chiara
Stefania Cimbanassi
Giorgio Olivero
Antonella Trombetta
Paolo Cotogni
Publication date
01-12-2018
Publisher
BioMed Central
Published in
World Journal of Emergency Surgery / Issue 1/2018
Electronic ISSN: 1749-7922
DOI
https://doi.org/10.1186/s13017-018-0172-7

Other articles of this Issue 1/2018

World Journal of Emergency Surgery 1/2018 Go to the issue