Skip to main content
Top
Published in: Pediatric Radiology 11/2016

01-10-2016 | Original Article

Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI

Authors: Kelly Jarvis, Susanne Schnell, Alex J. Barker, Julio Garcia, Ramona Lorenz, Michael Rose, Varun Chowdhary, James Carr, Joshua D. Robinson, Cynthia K. Rigsby, Michael Markl

Published in: Pediatric Radiology | Issue 11/2016

Login to get access

Abstract

Background

Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry.

Objective

We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry.

Materials and methods

Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16 ± 4 years [mean ± standard deviation], range: 9–21 years). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle).

Results

Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78% ± 28 [9–100], IVC to LPA: 54% ± 28 [4–98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R2=0.50, P=0.02; SVC to LPA: R2=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values.

Conclusion

Four-dimensional flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability.
Appendix
Available only for authorised users
Literature
3.
go back to reference Marelli A, Mackie A, Ionescu-Ittu R et al (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172CrossRefPubMed Marelli A, Mackie A, Ionescu-Ittu R et al (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172CrossRefPubMed
4.
go back to reference Larsson ES, Eriksson BO, Sixt R (2003) Decreased lung function and exercise capacity in Fontan patients. A long-term follow-up. Scand Cardiovasc J 37:58–63CrossRefPubMed Larsson ES, Eriksson BO, Sixt R (2003) Decreased lung function and exercise capacity in Fontan patients. A long-term follow-up. Scand Cardiovasc J 37:58–63CrossRefPubMed
5.
go back to reference Kim S-J, Kim W-H, Lim H-G et al (2008) Outcome of 200 patients after an extracardiac Fontan procedure. J Thorac Cardiovasc Surg 136:108–116CrossRefPubMed Kim S-J, Kim W-H, Lim H-G et al (2008) Outcome of 200 patients after an extracardiac Fontan procedure. J Thorac Cardiovasc Surg 136:108–116CrossRefPubMed
6.
go back to reference Shah MJ, Rychik J, Fogel MA et al (1997) Pulmonary AV malformations after superior cavopulmonary connection: resolution after inclusion of hepatic veins in the pulmonary circulation. Ann Thorac Surg 63:960–963CrossRefPubMed Shah MJ, Rychik J, Fogel MA et al (1997) Pulmonary AV malformations after superior cavopulmonary connection: resolution after inclusion of hepatic veins in the pulmonary circulation. Ann Thorac Surg 63:960–963CrossRefPubMed
7.
go back to reference Shinohara T, Yokoyama T (2001) Pulmonary arteriovenous malformation in patients with total cavopulmonary shunt: what role does lack of hepatic venous blood flow to the lungs play? Pediatr Cardiol 22:343–346CrossRefPubMed Shinohara T, Yokoyama T (2001) Pulmonary arteriovenous malformation in patients with total cavopulmonary shunt: what role does lack of hepatic venous blood flow to the lungs play? Pediatr Cardiol 22:343–346CrossRefPubMed
8.
go back to reference Hiramatsu T, Komori S, Nishimura Y et al (2008) Conversion from total cavopulmonary shunt to Fontan circulation: improved cyanosis with an 11-year interval. Ann Thorac Cardiovasc Surg 14:29–31PubMed Hiramatsu T, Komori S, Nishimura Y et al (2008) Conversion from total cavopulmonary shunt to Fontan circulation: improved cyanosis with an 11-year interval. Ann Thorac Cardiovasc Surg 14:29–31PubMed
9.
go back to reference Sernich S, Ross-Ascuitto N, Dorotan J et al (2009) Surgical improvement of hepatic venous mixing to resolve systemic arterial hypoxemia associated with post-Fontan pulmonary arteriovenous fistulae. Tex Heart Inst J 36:480–482PubMedPubMedCentral Sernich S, Ross-Ascuitto N, Dorotan J et al (2009) Surgical improvement of hepatic venous mixing to resolve systemic arterial hypoxemia associated with post-Fontan pulmonary arteriovenous fistulae. Tex Heart Inst J 36:480–482PubMedPubMedCentral
10.
go back to reference Be’eri E, Maier SE, Landzberg MJ et al (1998) In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation 98:2873–2882CrossRefPubMed Be’eri E, Maier SE, Landzberg MJ et al (1998) In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation 98:2873–2882CrossRefPubMed
11.
go back to reference Tayama M, Hirata N, Matsushita T et al (1999) Pulmonary blood flow distribution after the total cavopulmonary connection for complex cardiac anomalies. Heart Vessels 14:154–160CrossRefPubMed Tayama M, Hirata N, Matsushita T et al (1999) Pulmonary blood flow distribution after the total cavopulmonary connection for complex cardiac anomalies. Heart Vessels 14:154–160CrossRefPubMed
12.
go back to reference Fogel MA, Weinberg PM, Rychik J et al (1999) Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse. Circulation 99:1215–1221CrossRefPubMed Fogel MA, Weinberg PM, Rychik J et al (1999) Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse. Circulation 99:1215–1221CrossRefPubMed
13.
go back to reference Gutberlet M, Hosten N, Abdul-Khaliq H et al (1999) The value of magnetic resonance tomography (MRT) for evaluating ventricular and anastomotic functions in patients with an extra- or intracardiac total cavopulmonary connection (TCPC)-modified Fontan operation. Röfo 171:431–441PubMed Gutberlet M, Hosten N, Abdul-Khaliq H et al (1999) The value of magnetic resonance tomography (MRT) for evaluating ventricular and anastomotic functions in patients with an extra- or intracardiac total cavopulmonary connection (TCPC)-modified Fontan operation. Röfo 171:431–441PubMed
14.
go back to reference Fratz S, Hess J, Schwaiger M et al (2002) More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation. Circulation 106:1510–1513CrossRefPubMed Fratz S, Hess J, Schwaiger M et al (2002) More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation. Circulation 106:1510–1513CrossRefPubMed
15.
go back to reference Whitehead KK, Sundareswaran KS, Parks WJ et al (2009) Blood flow distribution in a large series of patients having the Fontan operation: a cardiac magnetic resonance velocity mapping study. J Thorac Cardiovasc Surg 138:96–102CrossRefPubMedPubMedCentral Whitehead KK, Sundareswaran KS, Parks WJ et al (2009) Blood flow distribution in a large series of patients having the Fontan operation: a cardiac magnetic resonance velocity mapping study. J Thorac Cardiovasc Surg 138:96–102CrossRefPubMedPubMedCentral
16.
go back to reference Brix L, Ringgaard S, Rasmusson A et al (2009) Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson 11:3CrossRefPubMedPubMedCentral Brix L, Ringgaard S, Rasmusson A et al (2009) Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson 11:3CrossRefPubMedPubMedCentral
17.
go back to reference Uribe S, Beerbaum P, Sorensen TS et al (2009) Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med 62:984–992CrossRefPubMed Uribe S, Beerbaum P, Sorensen TS et al (2009) Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med 62:984–992CrossRefPubMed
18.
go back to reference Markl M, Geiger J, Kilner PJ et al (2011) Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg 39:206–212CrossRefPubMed Markl M, Geiger J, Kilner PJ et al (2011) Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg 39:206–212CrossRefPubMed
19.
go back to reference Valverde I, Nordmeyer S, Uribe S et al (2012) Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson 14:25CrossRefPubMedPubMedCentral Valverde I, Nordmeyer S, Uribe S et al (2012) Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson 14:25CrossRefPubMedPubMedCentral
20.
go back to reference Bachler P, Valverde I, Pinochet N et al (2013) Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging. Radiology 267:67–75CrossRefPubMed Bachler P, Valverde I, Pinochet N et al (2013) Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging. Radiology 267:67–75CrossRefPubMed
21.
go back to reference Vasanawala SS, Hanneman K, Alley MT et al (2015) Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging 42:870–886CrossRefPubMed Vasanawala SS, Hanneman K, Alley MT et al (2015) Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging 42:870–886CrossRefPubMed
22.
go back to reference Walker PG, Howe TT, Davies RL et al (2000) Distribution of hepatic venous blood in the total cavo-pulmonary connection: an in vitro study. Eur J Cardiothorac Surg 17:658–665CrossRefPubMed Walker PG, Howe TT, Davies RL et al (2000) Distribution of hepatic venous blood in the total cavo-pulmonary connection: an in vitro study. Eur J Cardiothorac Surg 17:658–665CrossRefPubMed
23.
go back to reference DeGroff CG, Carlton JD, Weinberg CE et al (2002) Effect of vessel size on the flow efficiency of the total cavopulmonary connection: in vitro studies. Pediatr Cardiol 23:171–177CrossRefPubMed DeGroff CG, Carlton JD, Weinberg CE et al (2002) Effect of vessel size on the flow efficiency of the total cavopulmonary connection: in vitro studies. Pediatr Cardiol 23:171–177CrossRefPubMed
24.
go back to reference Migliavacca F, Kilner PJ, Pennati G et al (1999) Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection. IEEE Trans Biomed Eng 46:393–399CrossRefPubMed Migliavacca F, Kilner PJ, Pennati G et al (1999) Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection. IEEE Trans Biomed Eng 46:393–399CrossRefPubMed
25.
go back to reference Dasi LP, KrishnankuttyRema R, Kitajima HD et al (2009) Fontan hemodynamics: importance of pulmonary artery diameter. J Thorac Cardiovasc Surg 137:560–564CrossRefPubMedPubMedCentral Dasi LP, KrishnankuttyRema R, Kitajima HD et al (2009) Fontan hemodynamics: importance of pulmonary artery diameter. J Thorac Cardiovasc Surg 137:560–564CrossRefPubMedPubMedCentral
26.
go back to reference Marsden AL, Bernstein AJ, Reddy M et al (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137:394–403CrossRefPubMed Marsden AL, Bernstein AJ, Reddy M et al (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137:394–403CrossRefPubMed
27.
go back to reference Dasi LP, Whitehead K, Pekkan K et al (2011) Pulmonary hepatic flow distribution in total cavopulmonary connections: extracardiac versus intracardiac. J Thorac Cardiovasc Surg 141:207–214CrossRefPubMedPubMedCentral Dasi LP, Whitehead K, Pekkan K et al (2011) Pulmonary hepatic flow distribution in total cavopulmonary connections: extracardiac versus intracardiac. J Thorac Cardiovasc Surg 141:207–214CrossRefPubMedPubMedCentral
28.
go back to reference Tang E, Restrepo M, Haggerty CM et al (2014) Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc Imaging 7:215–224CrossRefPubMedPubMedCentral Tang E, Restrepo M, Haggerty CM et al (2014) Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc Imaging 7:215–224CrossRefPubMedPubMedCentral
29.
go back to reference Slesnick TC, Yoganathan AP (2014) Computational modeling of Fontan physiology: at the crossroads of pediatric cardiology and biomedical engineering. Int J Cardiovasc Imaging 30:1073–1084CrossRefPubMed Slesnick TC, Yoganathan AP (2014) Computational modeling of Fontan physiology: at the crossroads of pediatric cardiology and biomedical engineering. Int J Cardiovasc Imaging 30:1073–1084CrossRefPubMed
30.
go back to reference Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831CrossRefPubMed Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831CrossRefPubMed
31.
go back to reference Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed
32.
go back to reference Schnell S, Markl M, Entezari P et al (2014) k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 72:522–533CrossRefPubMed Schnell S, Markl M, Entezari P et al (2014) k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 72:522–533CrossRefPubMed
33.
go back to reference Bernstein MA, Zhou XJ, Polzin JA et al (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39:300–308CrossRefPubMed Bernstein MA, Zhou XJ, Polzin JA et al (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39:300–308CrossRefPubMed
34.
go back to reference Walker PG, Cranney GB, Scheidegger MB et al (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3:521–530CrossRefPubMed Walker PG, Cranney GB, Scheidegger MB et al (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3:521–530CrossRefPubMed
35.
go back to reference Bock J, Kreher BW, Hennig J et al (2007) Optimized pre-processing of time-resolved 2D and 3D Phase Contrast MRI data. 15th Annual Meeting of ISMRM. Abstract 3138, Berlin, Germany Bock J, Kreher BW, Hennig J et al (2007) Optimized pre-processing of time-resolved 2D and 3D Phase Contrast MRI data. 15th Annual Meeting of ISMRM. Abstract 3138, Berlin, Germany
36.
go back to reference Van Uitert R, Bitter I (2007) Subvoxel precise skeletons of volumetric data based on fast marching methods. Med Phys 34:627–638CrossRefPubMed Van Uitert R, Bitter I (2007) Subvoxel precise skeletons of volumetric data based on fast marching methods. Med Phys 34:627–638CrossRefPubMed
37.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed
38.
go back to reference Friman O, Hennemuth A, Harloff A et al (2011) Probabilistic 4D blood flow tracking and uncertainty estimation. Med Image Anal 15:720–728CrossRefPubMed Friman O, Hennemuth A, Harloff A et al (2011) Probabilistic 4D blood flow tracking and uncertainty estimation. Med Image Anal 15:720–728CrossRefPubMed
Metadata
Title
Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI
Authors
Kelly Jarvis
Susanne Schnell
Alex J. Barker
Julio Garcia
Ramona Lorenz
Michael Rose
Varun Chowdhary
James Carr
Joshua D. Robinson
Cynthia K. Rigsby
Michael Markl
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 11/2016
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3654-3

Other articles of this Issue 11/2016

Pediatric Radiology 11/2016 Go to the issue