Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

Evaluation and comparison of New 4DCT based strategies for proton treatment planning for lung tumors

Authors: Ning Wang, Baldev Patyal, Abiel Ghebremedhin, David Bush

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Purpose

To evaluate different strategies for proton lung treatment planning based on four-dimensional CT (4DCT) scans.

Methods and Materials

Twelve cases, involving only gross tumor volumes (GTV), were evaluated. Single image sets of (1) maximum intensity projection (MIP3) of end inhale (EI), middle exhale (ME) and end exhale (EE) images; (2) average intensity projection (AVG) of all phase images; and (3) EE images from 4DCT scans were selected as primary images for proton treatment planning. Internal target volumes (ITVs) outlined by a clinician were imported into MIP3, AVG, and EE images as planning targets. Initially, treatment uncertainties were not included in planning. Each plan was imported into phase images of 4DCT scans. Relative volumes of GTVs covered by 95% of prescribed dose and mean ipsilateral lung dose of a phase image obtained by averaging the dose in inspiration and expiration phases were used to evaluate the quality of a plan for a particular case. For comparing different planning strategies, the mean of the averaged relative volumes of GTVs covered by 95% of prescribed dose and its standard deviation for each planning strategy for all cases were used. Then, treatment uncertainties were included in planning. Each plan was recalculated in phase images of 4DCT scans. Same strategies were used for plan evaluation except dose-volume histograms of the planning target volumes (PTVs) instead of GTVs were used and the mean and standard deviation of the relative volumes of PTVs covered by 95% of prescribed dose and the ipsilateral lung dose were used to compare different planning strategies.

Results

MIP3 plans without treatment uncertainties yielded 96.7% of the mean relative GTV covered by 95% of prescribed dose (standard deviations of 5.7% for all cases). With treatment uncertainties, MIP3 plans yielded 99.5% of mean relative PTV covered by 95% of prescribed dose (standard deviations of 0.7%). Inclusion of treatment uncertainties improved PTV dose coverage but also increased the ipsilateral mean lung dose in general, and reduced the variations of the PTV dose coverage among different cases. Plans based on conventional axial CT scan (CVCT) gave the poorest PTV dose coverage (about 96% of mean relative PTV covered by 95% isodose) compared to MIP3 and EE plans, which resulted in 100% of PTV covered by 95% isodose for tumors with relatively large motion. AVG plans demonstrated PTV dose coverage of 89.8% and 94.4% for cases with small tumors. MIP3 plans demonstrated superior tumor coverage and were least sensitive to tumor size and tumor location.

Conclusion

MIP3 plans based on 4DCT scans were the best planning strategy for proton lung treatment planning.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bush DA, Slater JD, Bonnet R, Cheek GA, Dunbar RD, Moyers M, Slater JM: Proton-beam radiotherapy for early-stage lung cancer. Chest 1999, 116: 1313-1319. 10.1378/chest.116.5.1313CrossRefPubMed Bush DA, Slater JD, Bonnet R, Cheek GA, Dunbar RD, Moyers M, Slater JM: Proton-beam radiotherapy for early-stage lung cancer. Chest 1999, 116: 1313-1319. 10.1378/chest.116.5.1313CrossRefPubMed
2.
go back to reference Bush DA: Proton Radiation Therapy for Lung Cancer: Is There Enough Evidence? Oncology 2010, 24: 11. Bush DA: Proton Radiation Therapy for Lung Cancer: Is There Enough Evidence? Oncology 2010, 24: 11.
3.
go back to reference Bush DA, Slater JD, Shin BB, Cheek GA, Miller DW, Slater JM: Hypofractionated proton beam radiotherapy for stage I lung cancer. Chest 2004, 126: 1198-1203. 10.1378/chest.126.4.1198CrossRefPubMed Bush DA, Slater JD, Shin BB, Cheek GA, Miller DW, Slater JM: Hypofractionated proton beam radiotherapy for stage I lung cancer. Chest 2004, 126: 1198-1203. 10.1378/chest.126.4.1198CrossRefPubMed
4.
go back to reference Moyers MF, Miller DW, Bush DA, Slater JD: Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys 2001, 49: 1429-1438. 10.1016/S0360-3016(00)01555-8CrossRefPubMed Moyers MF, Miller DW, Bush DA, Slater JD: Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys 2001, 49: 1429-1438. 10.1016/S0360-3016(00)01555-8CrossRefPubMed
5.
go back to reference Urie M, Goitein M, Wagner M: Compensating for heterogeneities in proton radiation-therapy. Phys Med Bio 1984, 29: 553-566. 10.1088/0031-9155/29/5/008CrossRef Urie M, Goitein M, Wagner M: Compensating for heterogeneities in proton radiation-therapy. Phys Med Bio 1984, 29: 553-566. 10.1088/0031-9155/29/5/008CrossRef
6.
go back to reference Allien AM, Siracuse KM, Hayman JA, Balter JM: Evaluation of the influence of breathing on the movement and modeling of lung tumors. Int J Radiat Oncol Biol Phys 2004, 58: 1251-1257. 10.1016/j.ijrobp.2003.09.081CrossRef Allien AM, Siracuse KM, Hayman JA, Balter JM: Evaluation of the influence of breathing on the movement and modeling of lung tumors. Int J Radiat Oncol Biol Phys 2004, 58: 1251-1257. 10.1016/j.ijrobp.2003.09.081CrossRef
7.
go back to reference Pan T, Lee TY, Rietzel E, Chen GTY: 4D-CT imaging of a volume influence by the respiratory motion on multi-slice CT. Med Phys 2004, 31: 333-340. 10.1118/1.1639993CrossRefPubMed Pan T, Lee TY, Rietzel E, Chen GTY: 4D-CT imaging of a volume influence by the respiratory motion on multi-slice CT. Med Phys 2004, 31: 333-340. 10.1118/1.1639993CrossRefPubMed
8.
go back to reference Pan T: Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys 2005, 32: 627-634. 10.1118/1.1855013CrossRefPubMed Pan T: Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys 2005, 32: 627-634. 10.1118/1.1855013CrossRefPubMed
9.
go back to reference Engelsman M, Rietzel E, Kooy HM: Four-dimensional proton treatment planning for lung tumors. Int J Radiat Oncol Biol Phys 2006, 64: 1589-1595. 10.1016/j.ijrobp.2005.12.026CrossRefPubMed Engelsman M, Rietzel E, Kooy HM: Four-dimensional proton treatment planning for lung tumors. Int J Radiat Oncol Biol Phys 2006, 64: 1589-1595. 10.1016/j.ijrobp.2005.12.026CrossRefPubMed
10.
go back to reference Kang Y, Zhang X, Chang JY, Wang H, Wei X, Liao A, Komaki R, Cox JD, Balter PA, Liu H, Zhu XR, Mohan R, Dong L: 4D proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys 2007, 67: 1589-1595. Kang Y, Zhang X, Chang JY, Wang H, Wei X, Liao A, Komaki R, Cox JD, Balter PA, Liu H, Zhu XR, Mohan R, Dong L: 4D proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys 2007, 67: 1589-1595.
Metadata
Title
Evaluation and comparison of New 4DCT based strategies for proton treatment planning for lung tumors
Authors
Ning Wang
Baldev Patyal
Abiel Ghebremedhin
David Bush
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-73

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue