Skip to main content
Top
Published in: Diabetologia 10/2010

Open Access 01-10-2010 | Article

Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population

Authors: B. Fontaine-Bisson, F. Renström, O. Rolandsson, F. Payne, G. Hallmans, I. Barroso, P. W. Franks, The MAGIC investigators

Published in: Diabetologia | Issue 10/2010

Login to get access

Abstract

Aims/hypothesis

We determined whether single nucleotide polymorphisms (SNPs) previously associated with diabetogenic traits improve the discriminative power of a type 2 diabetes genetic risk score.

Methods

Participants (n = 2,751) were genotyped for 73 SNPs previously associated with type 2 diabetes, fasting glucose/insulin concentrations, obesity or lipid levels, from which five genetic risk scores (one for each of the four traits and one combining all SNPs) were computed. Type 2 diabetes patients and non-diabetic controls (n = 1,327/1,424) were identified using medical records in addition to an independent oral glucose tolerance test.

Results

Model 1, including only SNPs associated with type 2 diabetes, had a discriminative power of 0.591 (p < 1.00 × 10−20 vs null model) as estimated by the area under the receiver operator characteristic curve (ROC AUC). Model 2, including only fasting glucose/insulin SNPs, had a significantly higher discriminative power than the null model (ROC AUC 0.543; p = 9.38 × 10−6 vs null model), but lower discriminative power than model 1 (p = 5.92 × 10−5). Model 3, with only lipid-associated SNPs, had significantly higher discriminative power than the null model (ROC AUC 0.565; p = 1.44 × 10−9) and was not statistically different from model 1 (p = 0.083). The ROC AUC of model 4, which included only obesity SNPs, was 0.557 (p = 2.30 × 10−7 vs null model) and smaller than model 1 (p = 0.025). Finally, the model including all SNPs yielded a significant improvement in discriminative power compared with the null model (p < 1.0 × 10−20) and model 1 (p = 1.32 × 10−5); its ROC AUC was 0.626.

Conclusions/interpretation

Adding SNPs previously associated with fasting glucose, insulin, lipids or obesity to a genetic risk score for type 2 diabetes significantly increases the power to discriminate between people with and without clinically manifest type 2 diabetes compared with a model including only conventional type 2 diabetes loci.
Literature
1.
go back to reference World Health Organization (1999) Definitions, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis & classification of diabetes mellitus. World Health Organization, Geneva World Health Organization (1999) Definitions, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis & classification of diabetes mellitus. World Health Organization, Geneva
2.
go back to reference Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24:613–621CrossRefPubMed Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24:613–621CrossRefPubMed
3.
go back to reference Lango H, Palmer CN, Morris AD et al (2008) Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57:3129–3135CrossRefPubMed Lango H, Palmer CN, Morris AD et al (2008) Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57:3129–3135CrossRefPubMed
4.
go back to reference Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232CrossRefPubMed Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232CrossRefPubMed
5.
go back to reference Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219CrossRefPubMed Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219CrossRefPubMed
6.
go back to reference Renstrom F, Payne F, Nordstrom A et al (2009) Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet 18:1489–1496CrossRefPubMed Renstrom F, Payne F, Nordstrom A et al (2009) Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet 18:1489–1496CrossRefPubMed
7.
go back to reference Franks PW, Rolandsson O, Debenham SL et al (2008) Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia 51:458–463CrossRefPubMed Franks PW, Rolandsson O, Debenham SL et al (2008) Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia 51:458–463CrossRefPubMed
8.
go back to reference Hallmans G, Agren A, Johansson G et al (2003) Cardiovascular disease and diabetes in the Northern Sweden Health and Disease Study Cohort—evaluation of risk factors and their interactions. Scand J Public Health Suppl 61:18–24CrossRefPubMed Hallmans G, Agren A, Johansson G et al (2003) Cardiovascular disease and diabetes in the Northern Sweden Health and Disease Study Cohort—evaluation of risk factors and their interactions. Scand J Public Health Suppl 61:18–24CrossRefPubMed
9.
go back to reference Willer CJ, Speliotes EK, Loos RJ et al (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41:25–34CrossRefPubMed Willer CJ, Speliotes EK, Loos RJ et al (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41:25–34CrossRefPubMed
10.
go back to reference Lindgren CM, Heid IM, Randall JC et al (2009) Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet 5:e1000508CrossRefPubMed Lindgren CM, Heid IM, Randall JC et al (2009) Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet 5:e1000508CrossRefPubMed
11.
go back to reference Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116CrossRefPubMed Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116CrossRefPubMed
12.
go back to reference Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645CrossRefPubMed Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645CrossRefPubMed
13.
go back to reference Kathiresan S, Willer CJ, Peloso GM et al (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41:56–65CrossRefPubMed Kathiresan S, Willer CJ, Peloso GM et al (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41:56–65CrossRefPubMed
14.
go back to reference Thorleifsson G, Walters GB, Gudbjartsson DF et al (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24CrossRefPubMed Thorleifsson G, Walters GB, Gudbjartsson DF et al (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24CrossRefPubMed
15.
go back to reference Benzinou M, Creemers JW, Choquet H et al (2008) Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat Genet 40:943–945CrossRefPubMed Benzinou M, Creemers JW, Choquet H et al (2008) Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat Genet 40:943–945CrossRefPubMed
16.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed
17.
go back to reference Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345:971–980CrossRefPubMed Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345:971–980CrossRefPubMed
18.
go back to reference Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed
19.
go back to reference Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350CrossRefPubMed Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350CrossRefPubMed
20.
go back to reference Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789CrossRefPubMed Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789CrossRefPubMed
22.
go back to reference Franks PW, Hanson RL, Knowler WC et al (2007) Childhood predictors of young-onset type 2 diabetes. Diabetes 56:2964–2972CrossRefPubMed Franks PW, Hanson RL, Knowler WC et al (2007) Childhood predictors of young-onset type 2 diabetes. Diabetes 56:2964–2972CrossRefPubMed
23.
go back to reference Morrison JA, Glueck CJ, Horn PS, Wang P (2010) Childhood predictors of adult type 2 diabetes at 9- and 26-year follow-ups. Arch Pediatr Adolesc Med 164: 53–60 Morrison JA, Glueck CJ, Horn PS, Wang P (2010) Childhood predictors of adult type 2 diabetes at 9- and 26-year follow-ups. Arch Pediatr Adolesc Med 164: 53–60
24.
go back to reference Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074CrossRefPubMed Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074CrossRefPubMed
25.
go back to reference Richter S, Shih DQ, Pearson ER et al (2003) Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha: haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes 52:2989–2995CrossRefPubMed Richter S, Shih DQ, Pearson ER et al (2003) Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha: haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes 52:2989–2995CrossRefPubMed
26.
go back to reference Frayling TM, Evans JC, Bulman MP et al (2001) Beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50(Suppl 1):S94–S100CrossRefPubMed Frayling TM, Evans JC, Bulman MP et al (2001) Beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50(Suppl 1):S94–S100CrossRefPubMed
27.
go back to reference Hicks AA, Pramstaller PP, Johansson A et al (2009) Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet 5:e1000672CrossRefPubMed Hicks AA, Pramstaller PP, Johansson A et al (2009) Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet 5:e1000672CrossRefPubMed
28.
go back to reference Beer NL, Tribble ND, McCulloch LJ et al (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 18:4081–4088CrossRefPubMed Beer NL, Tribble ND, McCulloch LJ et al (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 18:4081–4088CrossRefPubMed
29.
go back to reference Orho-Melander M, Melander O, Guiducci C et al (2008) Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57:3112–3121CrossRefPubMed Orho-Melander M, Melander O, Guiducci C et al (2008) Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57:3112–3121CrossRefPubMed
30.
go back to reference Vaxillaire M, Cavalcanti-Proenca C, Dechaume A et al (2008) The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes 57:2253–2257CrossRefPubMed Vaxillaire M, Cavalcanti-Proenca C, Dechaume A et al (2008) The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes 57:2253–2257CrossRefPubMed
31.
go back to reference Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRefPubMed Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRefPubMed
32.
go back to reference Goodman SN, Berlin JA (1994) The use of predicted confidence intervals when planning experiments and the misuse of power when interpreting results. Ann Intern Med 121:200–206PubMed Goodman SN, Berlin JA (1994) The use of predicted confidence intervals when planning experiments and the misuse of power when interpreting results. Ann Intern Med 121:200–206PubMed
33.
go back to reference Smith AH, Bates MN (1992) Confidence limit analyses should replace power calculations in the interpretation of epidemiologic studies. Epidemiology 3:449–452CrossRefPubMed Smith AH, Bates MN (1992) Confidence limit analyses should replace power calculations in the interpretation of epidemiologic studies. Epidemiology 3:449–452CrossRefPubMed
34.
go back to reference Detsky AS, Sackett DL (1985) When was a “negative” clinical trial big enough? How many patients you needed depends on what you found. Arch Intern Med 145:709–712CrossRefPubMed Detsky AS, Sackett DL (1985) When was a “negative” clinical trial big enough? How many patients you needed depends on what you found. Arch Intern Med 145:709–712CrossRefPubMed
35.
go back to reference Mayans S, Lackovic K, Lindgren P et al (2007) TCF7L2 polymorphisms are associated with type 2 diabetes in northern Sweden. Eur J Hum Genet 15:342–346CrossRefPubMed Mayans S, Lackovic K, Lindgren P et al (2007) TCF7L2 polymorphisms are associated with type 2 diabetes in northern Sweden. Eur J Hum Genet 15:342–346CrossRefPubMed
Metadata
Title
Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population
Authors
B. Fontaine-Bisson
F. Renström
O. Rolandsson
F. Payne
G. Hallmans
I. Barroso
P. W. Franks
The MAGIC investigators
Publication date
01-10-2010
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 10/2010
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-1792-y

Other articles of this Issue 10/2010

Diabetologia 10/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine