Skip to main content
Top
Published in: Breast Cancer Research 4/2005

01-08-2005 | Viewpoint

Estrogen-repressed genes – key mediators of estrogen action?

Authors: Simeen Zubairy, Steffi Oesterreich

Published in: Breast Cancer Research | Issue 4/2005

Login to get access

Excerpt

Estrogen receptor (ER)-α is a member of the nuclear receptor family of transcription factors. It is regulated not only by binding to its ligand but also through interaction with co-regulators that can either enhance (coactivators) or repress (corepressors) its transcriptional activity. ER-α regulates the expression of a large number of genes, including components of the signaling, cell cycle, and anti-apoptosis pathways. A great deal of work in this area has increased our understanding of the role of ER-α in activation of genes; we now know that binding of estrogen to ER-α results in repositioning of helix 12 that allows recruitment of coactivators and thus activation of transcription. However, recent gene expression profiling by a number of groups using different model systems has revealed that the majority of estrogen-regulated genes are repressed rather than activated. This has been shown in cells cultured in vitro but also in vivo, where estrogen treatment resulted in downregulation of a significant number of target genes. This repression was lost in ER-α-knockout mice [1], confirming that repression requires ER-α. Although estrogen-mediated repression of genes has received little attention in the past, it is likely to be critical for the role of ER-α in both normal and disease processes. Herein we discuss some important studies on repression by ER-α and try to highlight the most burning (and partially controversial) questions. …
Literature
1.
go back to reference Hewitt SC, Deroo BJ, Hansen K, Collins J, Grissom S, Afshari CA, Korach KS: Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol Endocrinol. 2003, 17: 2070-2083. 10.1210/me.2003-0146.CrossRefPubMed Hewitt SC, Deroo BJ, Hansen K, Collins J, Grissom S, Afshari CA, Korach KS: Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol Endocrinol. 2003, 17: 2070-2083. 10.1210/me.2003-0146.CrossRefPubMed
2.
go back to reference Newman SP, Bates NP, Vernimmen D, Parker MG, Hurst HC: Cofactor competition between the ligand-bound oestrogen receptor and an intron 1 enhancer leads to oestrogen repression of ERBB2 expression in breast cancer. Oncogene. 2000, 19: 490-497. 10.1038/sj.onc.1203416.CrossRefPubMed Newman SP, Bates NP, Vernimmen D, Parker MG, Hurst HC: Cofactor competition between the ligand-bound oestrogen receptor and an intron 1 enhancer leads to oestrogen repression of ERBB2 expression in breast cancer. Oncogene. 2000, 19: 490-497. 10.1038/sj.onc.1203416.CrossRefPubMed
3.
go back to reference Kelley KM, Rowan BG, Ratnam M: Modulation of the folate receptor alpha gene by the estrogen receptor: mechanism and implications in tumor targeting. Cancer Res. 2003, 63: 2820-2828.PubMed Kelley KM, Rowan BG, Ratnam M: Modulation of the folate receptor alpha gene by the estrogen receptor: mechanism and implications in tumor targeting. Cancer Res. 2003, 63: 2820-2828.PubMed
4.
go back to reference Oesterreich S, Deng W, Jiang S, Cui X, Ivanova M, Schiff R, Kang K, Hadsell DL, Behrens J, Lee AV: Estrogen-mediated downregulation of E-cadherin in breast cancer cells. Cancer Res. 2003, 63: 5203-5208.PubMed Oesterreich S, Deng W, Jiang S, Cui X, Ivanova M, Schiff R, Kang K, Hadsell DL, Behrens J, Lee AV: Estrogen-mediated downregulation of E-cadherin in breast cancer cells. Cancer Res. 2003, 63: 5203-5208.PubMed
5.
go back to reference Rajendran RR, Nye AC, Frasor J, Balsara RD, Martini PG, Katzenellenbogen BS: Regulation of nuclear receptor transcriptional activity by a novel DEAD box RNA helicase (DP97). J Biol Chem. 2003, 278: 4628-4638. 10.1074/jbc.M210066200.CrossRefPubMed Rajendran RR, Nye AC, Frasor J, Balsara RD, Martini PG, Katzenellenbogen BS: Regulation of nuclear receptor transcriptional activity by a novel DEAD box RNA helicase (DP97). J Biol Chem. 2003, 278: 4628-4638. 10.1074/jbc.M210066200.CrossRefPubMed
6.
go back to reference Stein B, Yang MX: Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol. 1995, 15: 4971-4979.CrossRefPubMedPubMedCentral Stein B, Yang MX: Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol. 1995, 15: 4971-4979.CrossRefPubMedPubMedCentral
7.
go back to reference Webb P, Valentine C, Nguyen P, Price RH, Marimuthu A, West BL, Baxter JD, Kushner PJ: ERbeta binds N-CoR in the presence of estrogens via an LXXLL-like motif in the N-CoR C-terminus. Nucl Recept. 2003, 1: 4-10.1186/1478-1336-1-4.CrossRefPubMedPubMedCentral Webb P, Valentine C, Nguyen P, Price RH, Marimuthu A, West BL, Baxter JD, Kushner PJ: ERbeta binds N-CoR in the presence of estrogens via an LXXLL-like motif in the N-CoR C-terminus. Nucl Recept. 2003, 1: 4-10.1186/1478-1336-1-4.CrossRefPubMedPubMedCentral
Metadata
Title
Estrogen-repressed genes – key mediators of estrogen action?
Authors
Simeen Zubairy
Steffi Oesterreich
Publication date
01-08-2005
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2005
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1271

Other articles of this Issue 4/2005

Breast Cancer Research 4/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine