Skip to main content
Top
Published in: Neurological Sciences 11/2014

01-11-2014 | Review Article

Estrogen receptors’ neuroprotective effect against glutamate-induced neurotoxicity

Authors: Yu-Long Lan, Jie Zhao, Shao Li

Published in: Neurological Sciences | Issue 11/2014

Login to get access

Abstract

Glutamate is the most abundant excitatory brain neurotransmitter that has important functional significance with respect to neurodegenerative conditions. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease (AD) has been gradually becoming elucidated recently. Excessive release of glutamate induces an increase in intracellular Ca2+ levels, thus triggers a cascade of cellular responses, ultimately leading to neuronal cell death. This type of neuronal damage induced by over-excitation has been proposed to be involved in a number of neuropathological conditions, ranging from acute insults to chronic neurodegenerative disorders. Estrogen could be effective in modulating glutamate-induced neurotoxicity and the protective responsivenesses are mostly estrogen receptors (ERs)-dependent. However, the mechanism underlying estrogen’s neuroprotective effect is not fully clarified and is complicated by the presence of several distinct ER types. So a deeper research into the neuroprotection of ERs might be informative about the positive effect that estrogen might have on ageing-related cognitive changes. Extensive studies have indicated the neuroprotective effects of ERs against glutamate-induced neurotoxicity. The purpose of this review is to elucidate ERs’ neuroprotective effects against glutamate-induced cytotoxicity and explore new ways to prevent and cure neurotoxicity-associated neurodegenerative disorders.
Literature
1.
go back to reference Gazulla J, Cavero-Nagore M (2006) Glutamate and Alzheimer’s disease. Rev Neurol 42:427–432PubMed Gazulla J, Cavero-Nagore M (2006) Glutamate and Alzheimer’s disease. Rev Neurol 42:427–432PubMed
2.
go back to reference Crescenzi R, DeBrosse C, Nanga RP et al (2014) In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. Neuroimage. [pii]: S1053-8119(14)00544-8 Crescenzi R, DeBrosse C, Nanga RP et al (2014) In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. Neuroimage. [pii]: S1053-8119(14)00544-8
3.
go back to reference Burbaeva GS, Boksha IS, Tereshkina EB et al (2014) A role of glutamate decarboxylase in Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 114(4):68–72 Burbaeva GS, Boksha IS, Tereshkina EB et al (2014) A role of glutamate decarboxylase in Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 114(4):68–72
4.
go back to reference Ribeiro FM, Devries RA, Hamilton A et al (2014) Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington’s disease. Hum Mol Genet 23(8):2030–2042PubMedCrossRef Ribeiro FM, Devries RA, Hamilton A et al (2014) Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington’s disease. Hum Mol Genet 23(8):2030–2042PubMedCrossRef
5.
go back to reference Rettberg JR, Yao J, Brinton RD (2014) Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 35(1):8–30PubMedCrossRef Rettberg JR, Yao J, Brinton RD (2014) Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 35(1):8–30PubMedCrossRef
6.
go back to reference Zhao L, Brinton RD (2007) Estrogen receptor alpha and beta differentially regulate intracellular Ca2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res 1172:48–59PubMedCrossRef Zhao L, Brinton RD (2007) Estrogen receptor alpha and beta differentially regulate intracellular Ca2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res 1172:48–59PubMedCrossRef
7.
go back to reference Kajta M, Domin H, Grynkiewicz G et al (2007) Genistein inhibits glutamate-induced apoptotic processes in primary neuronal cell cultures: an involvement of aryl hydrocarbon receptor and estrogen receptor/glycogen synthase kinase-3beta intracellular signaling pathway. Neuroscience 145(2):592–604PubMedCrossRef Kajta M, Domin H, Grynkiewicz G et al (2007) Genistein inhibits glutamate-induced apoptotic processes in primary neuronal cell cultures: an involvement of aryl hydrocarbon receptor and estrogen receptor/glycogen synthase kinase-3beta intracellular signaling pathway. Neuroscience 145(2):592–604PubMedCrossRef
8.
go back to reference Gingerich S, Kim GL, Chalmers JA et al (2010) Estrogen receptor alpha and G-protein coupled receptor 30 mediate the neuroprotective effects of 17beta-estradiol in novel murine hippocampal cell models. Neuroscience 170(1):54–66PubMedCrossRef Gingerich S, Kim GL, Chalmers JA et al (2010) Estrogen receptor alpha and G-protein coupled receptor 30 mediate the neuroprotective effects of 17beta-estradiol in novel murine hippocampal cell models. Neuroscience 170(1):54–66PubMedCrossRef
9.
go back to reference Kuo JR, Wang CC, Huang SK et al (2012) Tamoxifen depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase Cot in rat cerebral cortex nerve terminals. Neurochem Int 60(2):105–114PubMedCrossRef Kuo JR, Wang CC, Huang SK et al (2012) Tamoxifen depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase Cot in rat cerebral cortex nerve terminals. Neurochem Int 60(2):105–114PubMedCrossRef
10.
go back to reference Millan C, Torres M, Sanchez-Prieto J (2003) Co-activation of PKA and PKC in cerebrocortical nerve terminals synergistically facilitates glutamate release. J Neurochem 87(5):1101–1111PubMedCrossRef Millan C, Torres M, Sanchez-Prieto J (2003) Co-activation of PKA and PKC in cerebrocortical nerve terminals synergistically facilitates glutamate release. J Neurochem 87(5):1101–1111PubMedCrossRef
11.
go back to reference Wang SJ, Sihra TS (2004) Noncompetitive metabotropic glutamate 5 receptor antagonist (E)-2-methyl-6-styryl-pyridine (SIB1893) depresses glutamate release through inhibition of voltage-dependent Ca2+ entry in rat cerebrocortical nerve terminals (synaptosomes). J Pharmacol Exp Ther 309(3):951–958PubMedCrossRef Wang SJ, Sihra TS (2004) Noncompetitive metabotropic glutamate 5 receptor antagonist (E)-2-methyl-6-styryl-pyridine (SIB1893) depresses glutamate release through inhibition of voltage-dependent Ca2+ entry in rat cerebrocortical nerve terminals (synaptosomes). J Pharmacol Exp Ther 309(3):951–958PubMedCrossRef
12.
go back to reference Pittaluga A, Feligioni M, Longordo F et al (2005) Somatostatin induced activation and up-regulation of N-methyl-D-aspartate receptor function: mediation through calmodulin-dependent protein kinase II, phospholipase C, proteinkinase C, and tyrosine kinase in hippocampal noradrenergic nerve endings. J Pharmacol Exp Ther 313(1):242–249PubMedCrossRef Pittaluga A, Feligioni M, Longordo F et al (2005) Somatostatin induced activation and up-regulation of N-methyl-D-aspartate receptor function: mediation through calmodulin-dependent protein kinase II, phospholipase C, proteinkinase C, and tyrosine kinase in hippocampal noradrenergic nerve endings. J Pharmacol Exp Ther 313(1):242–249PubMedCrossRef
13.
go back to reference Yang TT, Wang SJ (2008) Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component. Neurochem Int 52(6):979–989PubMedCrossRef Yang TT, Wang SJ (2008) Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component. Neurochem Int 52(6):979–989PubMedCrossRef
14.
go back to reference Lu CW, Lin TY, Wang SJ (2010) Memantine depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebral cortex nerve terminals: an NMDA receptor-independent mechanism. Neurochem Int 57(2):168–176PubMedCrossRef Lu CW, Lin TY, Wang SJ (2010) Memantine depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebral cortex nerve terminals: an NMDA receptor-independent mechanism. Neurochem Int 57(2):168–176PubMedCrossRef
15.
go back to reference Gursoy E, Cardounel A, Al-khlaiwi T et al (2002) Tamoxifen protects clonal mouse hippocampal (HT-22) cells against neurotoxins-induced cell death. Neurochem Int 40(5):405–412PubMedCrossRef Gursoy E, Cardounel A, Al-khlaiwi T et al (2002) Tamoxifen protects clonal mouse hippocampal (HT-22) cells against neurotoxins-induced cell death. Neurochem Int 40(5):405–412PubMedCrossRef
16.
go back to reference Lee ES, Yin Z, Milatovic D et al (2009) Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicol Sci 110(1):156–167PubMedCentralPubMedCrossRef Lee ES, Yin Z, Milatovic D et al (2009) Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicol Sci 110(1):156–167PubMedCentralPubMedCrossRef
17.
go back to reference McMullan SM, Phanavanh B, Li GG et al (2012) Metabotropic glutamate receptors inhibit microglial glutamate release. ASN Neuro 4(5) (e00094) McMullan SM, Phanavanh B, Li GG et al (2012) Metabotropic glutamate receptors inhibit microglial glutamate release. ASN Neuro 4(5) (e00094)
18.
go back to reference Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585:3798–3805PubMedCrossRef Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585:3798–3805PubMedCrossRef
19.
go back to reference Kelley KW, Dantzer R (2011) Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun Suppl 1:S13–S20CrossRef Kelley KW, Dantzer R (2011) Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun Suppl 1:S13–S20CrossRef
20.
go back to reference Andrew M, Fukuda Jerome Badaut (2012) Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 9:279CrossRef Andrew M, Fukuda Jerome Badaut (2012) Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 9:279CrossRef
21.
go back to reference Lee E, Sidoryk-Wegrzynowicz M, Wang N et al (2012) GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J Bio Chem 287(32):26817–26828CrossRef Lee E, Sidoryk-Wegrzynowicz M, Wang N et al (2012) GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J Bio Chem 287(32):26817–26828CrossRef
22.
go back to reference Lee E, Sidoryk-Wegrzynowicz M, Yin Z et al (2012) Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 60(7):1024–1036PubMedCentralPubMedCrossRef Lee E, Sidoryk-Wegrzynowicz M, Yin Z et al (2012) Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 60(7):1024–1036PubMedCentralPubMedCrossRef
23.
go back to reference Kiss J, Csaba Z, Csaki A et al (2013) Demonstration of estrogen receptor alpha protein in glutamatergic (vesicular glutamate transporter 2 immunoreactive) neurons of the female rat hypothalamus and amygdala using double-label immunocytochemistry. Exp Brain Res 226(4):595–602PubMedCrossRef Kiss J, Csaba Z, Csaki A et al (2013) Demonstration of estrogen receptor alpha protein in glutamatergic (vesicular glutamate transporter 2 immunoreactive) neurons of the female rat hypothalamus and amygdala using double-label immunocytochemistry. Exp Brain Res 226(4):595–602PubMedCrossRef
24.
go back to reference Cimarosti H, O’Shea RD, Jones NM et al (2006) The effects of estradiol on estrogen receptor and glutamate transporter expression in organotypic hippocampal cultures exposed to oxygen-glucose deprivation. Neurochem Res 31(4):483–490PubMedCrossRef Cimarosti H, O’Shea RD, Jones NM et al (2006) The effects of estradiol on estrogen receptor and glutamate transporter expression in organotypic hippocampal cultures exposed to oxygen-glucose deprivation. Neurochem Res 31(4):483–490PubMedCrossRef
26.
go back to reference Lee ES, Sidoryk M, Jiang H (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110(2):530–544PubMedCentralPubMedCrossRef Lee ES, Sidoryk M, Jiang H (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110(2):530–544PubMedCentralPubMedCrossRef
27.
go back to reference Pawlak J, Brito V, Kuppers E et al (2005) Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res 138(1):1–7PubMedCrossRef Pawlak J, Brito V, Kuppers E et al (2005) Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res 138(1):1–7PubMedCrossRef
28.
go back to reference Kim K, Lee SG, Kegelman TP et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493PubMedCentralPubMedCrossRef Kim K, Lee SG, Kegelman TP et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493PubMedCentralPubMedCrossRef
29.
go back to reference Lipatova O, Byrd D, Green JT et al (2014) Effects of continuous vs. cycling estrogen replacement on the acquisition, retention and expression of place- and response-learning in the open-field tower maze. Neurobiol Learn Mem 114C:81–89CrossRef Lipatova O, Byrd D, Green JT et al (2014) Effects of continuous vs. cycling estrogen replacement on the acquisition, retention and expression of place- and response-learning in the open-field tower maze. Neurobiol Learn Mem 114C:81–89CrossRef
30.
go back to reference Szego EM, Barabas K, Balog J et al (2006) Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 26(15):4104–4110PubMedCrossRef Szego EM, Barabas K, Balog J et al (2006) Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 26(15):4104–4110PubMedCrossRef
31.
go back to reference Mermelstein PG (2009) Membrane-localised oestrogen receptor alpha and beta influence neuronal activity through activation of metabotropic glutamate receptors. J Neuroendocrinol 21(4):257–262PubMedCentralPubMedCrossRef Mermelstein PG (2009) Membrane-localised oestrogen receptor alpha and beta influence neuronal activity through activation of metabotropic glutamate receptors. J Neuroendocrinol 21(4):257–262PubMedCentralPubMedCrossRef
32.
go back to reference Grove-Strawser D, Boulware MI, Mermelstein PG (2010) Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience 170(4):1045–1055PubMedCentralPubMedCrossRef Grove-Strawser D, Boulware MI, Mermelstein PG (2010) Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience 170(4):1045–1055PubMedCentralPubMedCrossRef
33.
go back to reference Boulware MI, Weick JP, Becklund BR et al (2005) Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein. J Neurosci 25(20):5066–5078PubMedCrossRef Boulware MI, Weick JP, Becklund BR et al (2005) Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein. J Neurosci 25(20):5066–5078PubMedCrossRef
34.
go back to reference Boulware MI, Mermelstein PG (2009) Membrane estrogen receptors activate metabotropic glutamate receptors to influence nervous system physiology. Steroids 74(7):608–613PubMedCentralPubMedCrossRef Boulware MI, Mermelstein PG (2009) Membrane estrogen receptors activate metabotropic glutamate receptors to influence nervous system physiology. Steroids 74(7):608–613PubMedCentralPubMedCrossRef
35.
go back to reference Spampinato SF, Molinaro G, Merlo S et al (2012) Estrogen receptors and type 1 metabotropic glutamate receptors are interdependent in protecting cortical neurons against beta-amyloid toxicity. Mol Pharmacol 81(1):12–20PubMedCrossRef Spampinato SF, Molinaro G, Merlo S et al (2012) Estrogen receptors and type 1 metabotropic glutamate receptors are interdependent in protecting cortical neurons against beta-amyloid toxicity. Mol Pharmacol 81(1):12–20PubMedCrossRef
36.
go back to reference Kuo J, Hariri OR, Bondar G et al (2009) Membrane estrogen receptor-alpha interacts with metabotropic glutamate receptor type 1a to mobilize intracellular calcium in hypothalamic astrocytes. Endocrinology 150(3):1369–1376PubMedCentralPubMedCrossRef Kuo J, Hariri OR, Bondar G et al (2009) Membrane estrogen receptor-alpha interacts with metabotropic glutamate receptor type 1a to mobilize intracellular calcium in hypothalamic astrocytes. Endocrinology 150(3):1369–1376PubMedCentralPubMedCrossRef
37.
go back to reference Chaban V, Li J, McDonald JS et al (2011) Estradiol attenuates the adenosine triphosphate-induced increase of intracellular calcium through group II metabotropic glutamate receptors in rat dorsal root ganglion neurons. J Neurosci Res 89(11):1707–1710PubMedCentralPubMedCrossRef Chaban V, Li J, McDonald JS et al (2011) Estradiol attenuates the adenosine triphosphate-induced increase of intracellular calcium through group II metabotropic glutamate receptors in rat dorsal root ganglion neurons. J Neurosci Res 89(11):1707–1710PubMedCentralPubMedCrossRef
38.
go back to reference Al-Sweidi S, Morissette M, Di Paolo T (2012) Effect of oestrogen receptors on brain NMDA receptors of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. J Neuroendocrinol 24(11):1375–1385PubMedCrossRef Al-Sweidi S, Morissette M, Di Paolo T (2012) Effect of oestrogen receptors on brain NMDA receptors of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. J Neuroendocrinol 24(11):1375–1385PubMedCrossRef
39.
40.
go back to reference Bryant DN, Dorsa DM (2010) Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity. Neuroscience 170(4):1261–1269PubMedCentralPubMedCrossRef Bryant DN, Dorsa DM (2010) Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity. Neuroscience 170(4):1261–1269PubMedCentralPubMedCrossRef
41.
go back to reference Aguirre C, Jayaraman A, Pike C et al (2010) Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-beta. J Neurochem 115(5):1277–1287PubMedCentralPubMedCrossRef Aguirre C, Jayaraman A, Pike C et al (2010) Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-beta. J Neurochem 115(5):1277–1287PubMedCentralPubMedCrossRef
42.
go back to reference Carswell HV, Macrae IM, Gallagher L et al (2004) Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 287(4):H1501–H1504PubMedCrossRef Carswell HV, Macrae IM, Gallagher L et al (2004) Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 287(4):H1501–H1504PubMedCrossRef
43.
go back to reference Zhao L, Wu TW (1010) Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1–2:22–34 Zhao L, Wu TW (1010) Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1–2:22–34
44.
go back to reference Gingerich S, Kim GL, Chalmers JA et al (2010) Estrogen receptor alpha and G-protein coupled receptor 30 mediate the neuroprotective effects of 17beta-estradiol in novel murine hippocampal cell models. Neuroscience 170(1):54–66PubMedCrossRef Gingerich S, Kim GL, Chalmers JA et al (2010) Estrogen receptor alpha and G-protein coupled receptor 30 mediate the neuroprotective effects of 17beta-estradiol in novel murine hippocampal cell models. Neuroscience 170(1):54–66PubMedCrossRef
45.
go back to reference Liu N, Shang J, Tian F et al (2011) In vivo optical imaging for evaluating the efficacy of edaravone after transient cerebral ischemia in mice. Brain Res 1397:66–75PubMedCrossRef Liu N, Shang J, Tian F et al (2011) In vivo optical imaging for evaluating the efficacy of edaravone after transient cerebral ischemia in mice. Brain Res 1397:66–75PubMedCrossRef
Metadata
Title
Estrogen receptors’ neuroprotective effect against glutamate-induced neurotoxicity
Authors
Yu-Long Lan
Jie Zhao
Shao Li
Publication date
01-11-2014
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 11/2014
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-014-1937-8

Other articles of this Issue 11/2014

Neurological Sciences 11/2014 Go to the issue