Skip to main content
Top
Published in: Inflammation 6/2022

04-06-2022 | Estradiol | Original Article

Melatonin Alleviates Ovariectomy-Induced Cardiovascular Inflammation in Sedentary or Exercised Rats by Upregulating SIRT1

Authors: Sevil Arabacı Tamer, Tülin Altınoluk, Miray Emran, Seda Korkmaz, Rozerin Göze Yüksel, Zeynep Baykal, Zehra Sena Dur, Hilal Nişva Levent, Mürüvvet Abbak Ural, Meral Yüksel, Özge Çevik, Feriha Ercan, Alper Yıldırım, Berrak Ç. Yeğen

Published in: Inflammation | Issue 6/2022

Login to get access

Abstract

We aimed to evaluate the impact of hormone replacement, melatonin, or exercise alone or their combination on oxidative damage and functional status of heart, brain, and aorta of ovariectomized (OVX) rats and to determine whether the signaling pathway is dependent on sirtuin-1 (SIRT1). Ovariectomized Sprague Dawley rats were orally given either a hormone replacement therapy (1 mg/kg/day,17β estradiol; HRT) or melatonin (4 mg/kg/day) or HRT + melatonin treatments or tap water, while each group was further divided into sedentary and exercise (30 min/5 days/week) groups. After the heart rate measurements and memory tests were performed, trunk blood was collected at the end of the 10th week to determine metabolic parameters in serum samples. Tissue samples of abdominal aorta, heart, and brain were taken for biochemical measurements and histopathological evaluation. Heart rates and memory performances of the OVX rats were not changed significantly by none of the applications. Melatonin treatment or its co-administration with HRT upregulated the expressions of IL-10 and SIRT1, reduced the expressions of IL-6 and TNF-α, and reduced DNA damage in the hearts and thoracic aortae of non-exercised rats. Co-administration of melatonin and HRT to exercised OVX rats reduced inflammatory response and upregulated SIRT1 expression in the aortic and cardiac tissues. The present study suggests that melatonin treatment, either alone or in combination with exercise and/or HRT, upregulates SIRT1 expression and alleviates oxidative injury and inflammation in the hearts and aortas of OVX rats. Melatonin should be considered in alleviating cardiovascular disease risk in postmenopausal women.
Literature
1.
go back to reference IfH, Metrics. 2019. Evaluation: Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019 Results. Institute for health metrics and evaluation Seattle. IfH, Metrics.  2019. Evaluation: Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019 Results. Institute for health metrics and evaluation Seattle.
2.
go back to reference Vogel, B., M. Acevedo, Y. Appelman, C.N.B. Merz, A. Chieffo, G.A. Figtree, M. Guerrero, V. Kunadian, C.S. Lam and A.H. Maas. 2021. The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. The Lancet. Vogel, B., M. Acevedo, Y. Appelman, C.N.B. Merz, A. Chieffo, G.A. Figtree, M. Guerrero, V. Kunadian, C.S. Lam and A.H. Maas. 2021. The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. The Lancet.
3.
go back to reference Abubakar, I., T. Tillmann, and A. Banerjee. 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 385: 117–171.CrossRef Abubakar, I., T. Tillmann, and A. Banerjee. 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 385: 117–171.CrossRef
4.
go back to reference Roth, G.A., G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, N.C. Barengo, A.Z. Beaton, E.J. Benjamin, and C.P. Benziger. 2020. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology 76: 2982–3021.PubMedPubMedCentralCrossRef Roth, G.A., G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, N.C. Barengo, A.Z. Beaton, E.J. Benjamin, and C.P. Benziger. 2020. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology 76: 2982–3021.PubMedPubMedCentralCrossRef
6.
go back to reference Yusuf, S., S. Hawken, S. Ôunpuu, T. Dans, A. Avezum, F. Lanas, M. McQueen, A. Budaj, P. Pais, and J. Varigos. 2004. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. The lancet 364: 937–952.CrossRef Yusuf, S., S. Hawken, S. Ôunpuu, T. Dans, A. Avezum, F. Lanas, M. McQueen, A. Budaj, P. Pais, and J. Varigos. 2004. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. The lancet 364: 937–952.CrossRef
7.
go back to reference Honigberg, M.C., S.M. Zekavat, K. Aragam, P. Finneran, D. Klarin, D.L. Bhatt, J.L. Januzzi, N.S. Scott, and P. Natarajan. 2019. Association of premature natural and surgical menopause with incident cardiovascular disease. JAMA 322: 2411–2421.PubMedPubMedCentralCrossRef Honigberg, M.C., S.M. Zekavat, K. Aragam, P. Finneran, D. Klarin, D.L. Bhatt, J.L. Januzzi, N.S. Scott, and P. Natarajan. 2019. Association of premature natural and surgical menopause with incident cardiovascular disease. JAMA 322: 2411–2421.PubMedPubMedCentralCrossRef
8.
go back to reference Mendelsohn, M.E., and R.H. Karas. 2005. Molecular and cellular basis of cardiovascular gender differences. Science 308: 1583–1587.PubMedCrossRef Mendelsohn, M.E., and R.H. Karas. 2005. Molecular and cellular basis of cardiovascular gender differences. Science 308: 1583–1587.PubMedCrossRef
9.
go back to reference Moreau, K.L., K.L. Hildreth, J. Klawitter, P. Blatchford, and W.M. Kohrt. 2020. Decline in endothelial function across the menopause transition in healthy women is related to decreased estradiol and increased oxidative stress. GeroScience 42: 1699–1714.PubMedPubMedCentralCrossRef Moreau, K.L., K.L. Hildreth, J. Klawitter, P. Blatchford, and W.M. Kohrt. 2020. Decline in endothelial function across the menopause transition in healthy women is related to decreased estradiol and increased oxidative stress. GeroScience 42: 1699–1714.PubMedPubMedCentralCrossRef
10.
go back to reference Sack, M.N., D. Rader, and R.O. Cannon. 1994. Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. The Lancet 343: 269–270.CrossRef Sack, M.N., D. Rader, and R.O. Cannon. 1994. Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. The Lancet 343: 269–270.CrossRef
11.
go back to reference Rosano, G., C. Vitale, G. Marazzi, and M. Volterrani. 2007. Menopause and cardiovascular disease: The evidence. Climacteric 10: 19–24.PubMedCrossRef Rosano, G., C. Vitale, G. Marazzi, and M. Volterrani. 2007. Menopause and cardiovascular disease: The evidence. Climacteric 10: 19–24.PubMedCrossRef
12.
go back to reference Zhao, D., E. Guallar, P. Ouyang, V. Subramanya, D. Vaidya, C.E. Ndumele, J.A. Lima, M.A. Allison, S.J. Shah, and A.G. Bertoni. 2018. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. Journal of the American College of Cardiology 71: 2555–2566.PubMedPubMedCentralCrossRef Zhao, D., E. Guallar, P. Ouyang, V. Subramanya, D. Vaidya, C.E. Ndumele, J.A. Lima, M.A. Allison, S.J. Shah, and A.G. Bertoni. 2018. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. Journal of the American College of Cardiology 71: 2555–2566.PubMedPubMedCentralCrossRef
13.
go back to reference Manson, J.E., R.T. Chlebowski, M.L. Stefanick, A.K. Aragaki, J.E. Rossouw, R.L. Prentice, G. Anderson, B.V. Howard, C.A. Thomson, and A.Z. LaCroix. 2013. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 310: 1353–1368.PubMedCrossRef Manson, J.E., R.T. Chlebowski, M.L. Stefanick, A.K. Aragaki, J.E. Rossouw, R.L. Prentice, G. Anderson, B.V. Howard, C.A. Thomson, and A.Z. LaCroix. 2013. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 310: 1353–1368.PubMedCrossRef
14.
go back to reference Lundberg, G. and N. Wenger. 2019. Menopause hormone therapy: what a cardiologist needs to know. American college of cardiology 1. Lundberg, G. and N. Wenger. 2019. Menopause hormone therapy: what a cardiologist needs to know. American college of cardiology 1.
15.
go back to reference Stojanovska, L., V. Apostolopoulos, R. Polman, and E. Borkoles. 2014. To exercise, or, not to exercise, during menopause and beyond. Maturitas 77: 318–323.PubMedCrossRef Stojanovska, L., V. Apostolopoulos, R. Polman, and E. Borkoles. 2014. To exercise, or, not to exercise, during menopause and beyond. Maturitas 77: 318–323.PubMedCrossRef
16.
go back to reference Lin, Y.-Y., and S.-D. Lee. 2018. Cardiovascular benefits of exercise training in postmenopausal hypertension. International journal of molecular sciences 19: 2523.PubMedCentralCrossRef Lin, Y.-Y., and S.-D. Lee. 2018. Cardiovascular benefits of exercise training in postmenopausal hypertension. International journal of molecular sciences 19: 2523.PubMedCentralCrossRef
17.
go back to reference Dodda, B.R., C.D. Bondi, M. Hasan, W.P. Clafshenkel, K.M. Gallagher, M.P. Kotlarczyk, S. Sethi, E. Buszko, J.J. Latimer, and J.M. Cline. 2019. Co-administering melatonin with an estradiol-progesterone menopausal hormone therapy represses mammary cancer development in a mouse model of HER2-positive breast cancer. Frontiers in oncology 9: 525.PubMedPubMedCentralCrossRef Dodda, B.R., C.D. Bondi, M. Hasan, W.P. Clafshenkel, K.M. Gallagher, M.P. Kotlarczyk, S. Sethi, E. Buszko, J.J. Latimer, and J.M. Cline. 2019. Co-administering melatonin with an estradiol-progesterone menopausal hormone therapy represses mammary cancer development in a mouse model of HER2-positive breast cancer. Frontiers in oncology 9: 525.PubMedPubMedCentralCrossRef
18.
go back to reference Gürler, E.B., Ö.T. Çilingir-Kaya, I. Peker Eyüboglu, F. Ercan, M. Akkiprik, R.J. Reiter, and B.Ç. Yegen. 2019. Melatonin supports alendronate in preserving bone matrix and prevents gastric inflammation in ovariectomized rats. Cell biochemistry and function 37: 102–112.PubMedCrossRef Gürler, E.B., Ö.T. Çilingir-Kaya, I. Peker Eyüboglu, F. Ercan, M. Akkiprik, R.J. Reiter, and B.Ç. Yegen. 2019. Melatonin supports alendronate in preserving bone matrix and prevents gastric inflammation in ovariectomized rats. Cell biochemistry and function 37: 102–112.PubMedCrossRef
19.
go back to reference Yi, M., S. Wang, T. Wu, X. Zhang, L. Jiang, and X. Fang. 2021. Effects of exogenous melatonin on sleep quality and menopausal symptoms in menopausal women: A systematic review and meta-analysis of randomized controlled trials. Menopause 28: 717–725.PubMedCrossRef Yi, M., S. Wang, T. Wu, X. Zhang, L. Jiang, and X. Fang. 2021. Effects of exogenous melatonin on sleep quality and menopausal symptoms in menopausal women: A systematic review and meta-analysis of randomized controlled trials. Menopause 28: 717–725.PubMedCrossRef
20.
go back to reference Allegra, M., R.J. Reiter, D.X. Tan, C. Gentile, L. Tesoriere, and M. Livrea. 2003. The chemistry of melatonin’s interaction with reactive species. Journal of pineal research 34: 1–10.PubMedCrossRef Allegra, M., R.J. Reiter, D.X. Tan, C. Gentile, L. Tesoriere, and M. Livrea. 2003. The chemistry of melatonin’s interaction with reactive species. Journal of pineal research 34: 1–10.PubMedCrossRef
21.
go back to reference Arabacı Tamer, S., A. Yildirim, Ö. Çevik, B. Aksu, M. Yüksel, E. Dertsiz, S. Şirvancı and B.Ç. Yegen. 2021. The ameliorative effects of melatonin on acetic acid-induced gastric ulcer in rats via its modulatory effects on gut microbiota. Arabacı Tamer, S., A. Yildirim, Ö. Çevik, B. Aksu, M. Yüksel, E. Dertsiz, S. Şirvancı and B.Ç. Yegen. 2021. The ameliorative effects of melatonin on acetic acid-induced gastric ulcer in rats via its modulatory effects on gut microbiota.
22.
go back to reference Poeggeler, B., S. Thuermann, A. Dose, M. Schoenke, S. Burkhardt, and R. Hardeland. 2002. Melatonin’s unique radical scavenging properties–roles of its functional substituents as revealed by a comparison with its structural analogs. Journal of pineal research 33: 20–30.PubMedCrossRef Poeggeler, B., S. Thuermann, A. Dose, M. Schoenke, S. Burkhardt, and R. Hardeland. 2002. Melatonin’s unique radical scavenging properties–roles of its functional substituents as revealed by a comparison with its structural analogs. Journal of pineal research 33: 20–30.PubMedCrossRef
23.
go back to reference Şener, G., H. Toklu, C. Kapucu, F. Ercan, G. Erkanlı, A. Kaçmaz, M. Tilki, and B.Ç. Yeğen. 2005. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surgery today 35: 52–59.PubMedCrossRef Şener, G., H. Toklu, C. Kapucu, F. Ercan, G. Erkanlı, A. Kaçmaz, M. Tilki, and B.Ç. Yeğen. 2005. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surgery today 35: 52–59.PubMedCrossRef
24.
go back to reference Tan, D.X., L.C. Manchester, R. Hardeland, S. Lopez-Burillo, J.C. Mayo, R.M. Sainz, and R.J. Reiter. 2003. Melatonin: A hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. Journal of pineal research 34: 75–78.PubMedCrossRef Tan, D.X., L.C. Manchester, R. Hardeland, S. Lopez-Burillo, J.C. Mayo, R.M. Sainz, and R.J. Reiter. 2003. Melatonin: A hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. Journal of pineal research 34: 75–78.PubMedCrossRef
25.
go back to reference Yildirim, A., S.A. Tamer, D. Sahin, F. Bagriacik, M.M. Kahraman, N.D. Onur, Y.B. Cayirli, Ö.T.C. Kaya, B. Aksu, and E. Akdeniz. 2019. The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term high-fat diet consumption in rats. British Journal of Nutrition 122: 841–855.PubMedCrossRef Yildirim, A., S.A. Tamer, D. Sahin, F. Bagriacik, M.M. Kahraman, N.D. Onur, Y.B. Cayirli, Ö.T.C. Kaya, B. Aksu, and E. Akdeniz. 2019. The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term high-fat diet consumption in rats. British Journal of Nutrition 122: 841–855.PubMedCrossRef
26.
go back to reference Bubenik, G., and S. Konturek. 2011. Melatonin and aging: Prospects for human treatment. Journal of physiology and pharmacology 62: 13.PubMed Bubenik, G., and S. Konturek. 2011. Melatonin and aging: Prospects for human treatment. Journal of physiology and pharmacology 62: 13.PubMed
27.
go back to reference Hardeland, R. 2012. Melatonin in aging and disease—multiple consequences of reduced secretion, options and limits of treatment. Aging and disease 3: 194.PubMed Hardeland, R. 2012. Melatonin in aging and disease—multiple consequences of reduced secretion, options and limits of treatment. Aging and disease 3: 194.PubMed
28.
go back to reference Hardeland, R. 2019. Aging, melatonin, and the pro-and anti-inflammatory networks. International journal of molecular sciences 20: 1223.PubMedCentralCrossRef Hardeland, R. 2019. Aging, melatonin, and the pro-and anti-inflammatory networks. International journal of molecular sciences 20: 1223.PubMedCentralCrossRef
29.
go back to reference Kireev, R., A. Tresguerres, C. Garcia, C. Ariznavarreta, E. Vara, and J.A. Tresguerres. 2008. Melatonin is able to prevent the liver of old castrated female rats from oxidative and pro-inflammatory damage. Journal of pineal research 45: 394–402.PubMedCrossRef Kireev, R., A. Tresguerres, C. Garcia, C. Ariznavarreta, E. Vara, and J.A. Tresguerres. 2008. Melatonin is able to prevent the liver of old castrated female rats from oxidative and pro-inflammatory damage. Journal of pineal research 45: 394–402.PubMedCrossRef
30.
go back to reference Baxi, D., P. Singh, K. Vachhrajani, and A. Ramachandran. 2012. Melatonin supplementation therapy as a potent alternative to ERT in ovariectomized rats. Climacteric 15: 382–392.PubMedCrossRef Baxi, D., P. Singh, K. Vachhrajani, and A. Ramachandran. 2012. Melatonin supplementation therapy as a potent alternative to ERT in ovariectomized rats. Climacteric 15: 382–392.PubMedCrossRef
31.
go back to reference Chen, Z., C.C. Chua, J. Gao, R.C. Hamdy, and B.H. Chua. 2003. Protective effect of melatonin on myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology 284: H1618–H1624.PubMedCrossRef Chen, Z., C.C. Chua, J. Gao, R.C. Hamdy, and B.H. Chua. 2003. Protective effect of melatonin on myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology 284: H1618–H1624.PubMedCrossRef
32.
go back to reference Geary, G.G., D.N. Krause, and S. Duckles. 1997. Melatonin directly constricts rat cerebral arteries through modulation of potassium channels. American Journal of Physiology-Heart and Circulatory Physiology 273: H1530–H1536.CrossRef Geary, G.G., D.N. Krause, and S. Duckles. 1997. Melatonin directly constricts rat cerebral arteries through modulation of potassium channels. American Journal of Physiology-Heart and Circulatory Physiology 273: H1530–H1536.CrossRef
33.
go back to reference Lee, Y.M., H.R. Chen, G. Hsiao, J.R. Sheu, J.J. Wang, and M.H. Yen. 2002. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo. Journal of pineal research 33: 72–80.PubMedCrossRef Lee, Y.M., H.R. Chen, G. Hsiao, J.R. Sheu, J.J. Wang, and M.H. Yen. 2002. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo. Journal of pineal research 33: 72–80.PubMedCrossRef
34.
go back to reference Pei, Z., S.F. Pang, and R.T.F. Cheung. 2003. Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 34: 770–775.PubMedCrossRef Pei, Z., S.F. Pang, and R.T.F. Cheung. 2003. Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 34: 770–775.PubMedCrossRef
35.
go back to reference Sahna, E., H. Parlakpinar, Y. Turkoz, and A. Acet. 2005. Protective effects of melatonin on myocardial ischemia-reperfusion induced infarct size and oxidative changes. Physiological research 54: 491.PubMedCrossRef Sahna, E., H. Parlakpinar, Y. Turkoz, and A. Acet. 2005. Protective effects of melatonin on myocardial ischemia-reperfusion induced infarct size and oxidative changes. Physiological research 54: 491.PubMedCrossRef
36.
go back to reference Sadeghi, M., S. Khosrawi, K. Heshmat-Ghahdarijani, Y. Gheisari, H. Roohafza, M. Mansoorian, and S.G. Hoseini. 2020. Effect of melatonin on heart failure: Design for a double-blinded randomized clinical trial. ESC Heart Failure 7: 3142–3150.PubMedPubMedCentralCrossRef Sadeghi, M., S. Khosrawi, K. Heshmat-Ghahdarijani, Y. Gheisari, H. Roohafza, M. Mansoorian, and S.G. Hoseini. 2020. Effect of melatonin on heart failure: Design for a double-blinded randomized clinical trial. ESC Heart Failure 7: 3142–3150.PubMedPubMedCentralCrossRef
37.
go back to reference Treister‐Goltzman, Y. and R. Peleg. 2021. Melatonin and the health of menopausal women: a systematic review. Journal of pineal research e12743. Treister‐Goltzman, Y. and R. Peleg. 2021. Melatonin and the health of menopausal women: a systematic review. Journal of pineal research e12743.
38.
go back to reference Kitada, M., Y. Ogura, and D. Koya. 2016. The protective role of Sirt1 in vascular tissue: Its relationship to vascular aging and atherosclerosis. Aging (Albany NY) 8: 2290.CrossRef Kitada, M., Y. Ogura, and D. Koya. 2016. The protective role of Sirt1 in vascular tissue: Its relationship to vascular aging and atherosclerosis. Aging (Albany NY) 8: 2290.CrossRef
39.
go back to reference Babayev, H., S. Arabaci-Tamer, A. Yildirim, D. Kayali, F. Ercan, C. Yegen, M.U. Ugurlu, and B.Ç. Yeğen. 2021. Sleeve gastrectomy–induced endocrine changes in the remnant stomachs of premenopausal and postmenopausal rats: Role of the estrogen receptors. Surgery for Obesity and Related Diseases 17: 193–207.PubMedCrossRef Babayev, H., S. Arabaci-Tamer, A. Yildirim, D. Kayali, F. Ercan, C. Yegen, M.U. Ugurlu, and B.Ç. Yeğen. 2021. Sleeve gastrectomy–induced endocrine changes in the remnant stomachs of premenopausal and postmenopausal rats: Role of the estrogen receptors. Surgery for Obesity and Related Diseases 17: 193–207.PubMedCrossRef
40.
go back to reference Koyuncuoğlu, T., S. Arabacı Tamer, C. Erzik, A. Karagöz, D. Akakın, M. Yüksel, and B.Ç. Yeğen. 2019. Oestrogen receptor ERα and ERβ agonists ameliorate oxidative brain injury and improve memory dysfunction in rats with an epileptic seizure. Experimental physiology 104: 1911–1928.PubMedCrossRef Koyuncuoğlu, T., S. Arabacı Tamer, C. Erzik, A. Karagöz, D. Akakın, M. Yüksel, and B.Ç. Yeğen. 2019. Oestrogen receptor ERα and ERβ agonists ameliorate oxidative brain injury and improve memory dysfunction in rats with an epileptic seizure. Experimental physiology 104: 1911–1928.PubMedCrossRef
41.
go back to reference Arabacı Tamer, S., S. Üçem, B. Büke, M. Güner, A.G. Karaküçük, N. Yiğit, S. Şirvancı, Ö. Çevik, F. Ercan, and B.Ç. Yeğen. 2020. Regular moderate exercise alleviates gastric oxidative damage in rats via the contribution of oxytocin receptors. The Journal of physiology 598: 2355–2370.PubMedCrossRef Arabacı Tamer, S., S. Üçem, B. Büke, M. Güner, A.G. Karaküçük, N. Yiğit, S. Şirvancı, Ö. Çevik, F. Ercan, and B.Ç. Yeğen. 2020. Regular moderate exercise alleviates gastric oxidative damage in rats via the contribution of oxytocin receptors. The Journal of physiology 598: 2355–2370.PubMedCrossRef
42.
go back to reference Radák, Z., T. Kaneko, S. Tahara, H. Nakamoto, J. Pucsok, M. Sasvári, C. Nyakas, and S. Goto. 2001. Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochemistry international 38: 17–23.PubMedCrossRef Radák, Z., T. Kaneko, S. Tahara, H. Nakamoto, J. Pucsok, M. Sasvári, C. Nyakas, and S. Goto. 2001. Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochemistry international 38: 17–23.PubMedCrossRef
43.
go back to reference Bevins, R.A., and J. Besheer. 2006. Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study’recognition memory’. Nature protocols 1: 1306–1311.PubMedCrossRef Bevins, R.A., and J. Besheer. 2006. Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study’recognition memory’. Nature protocols 1: 1306–1311.PubMedCrossRef
44.
go back to reference Elrod, K., and J.J. Buccafusco. 1988. An evaluation of the mechanism of scopolamine-induced impairment in two passive avoidance protocols. Pharmacology Biochemistry and Behavior 29: 15–21.PubMedCrossRef Elrod, K., and J.J. Buccafusco. 1988. An evaluation of the mechanism of scopolamine-induced impairment in two passive avoidance protocols. Pharmacology Biochemistry and Behavior 29: 15–21.PubMedCrossRef
45.
go back to reference Bradley, P.P., D.A. Priebat, R.D. Christensen, and G. Rothstein. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology 78: 206–209.PubMedCrossRef Bradley, P.P., D.A. Priebat, R.D. Christensen, and G. Rothstein. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology 78: 206–209.PubMedCrossRef
46.
go back to reference Tuğtepe, H., G. Şener, N.K. Bıyıklı, M. Yüksel, Ş Çetinel, N. Gedik, and B.Ç. Yeğen. 2007. The protective effect of oxytocin on renal ischemia/reperfusion injury in rats. Regulatory peptides 140: 101–108.PubMedCrossRef Tuğtepe, H., G. Şener, N.K. Bıyıklı, M. Yüksel, Ş Çetinel, N. Gedik, and B.Ç. Yeğen. 2007. The protective effect of oxytocin on renal ischemia/reperfusion injury in rats. Regulatory peptides 140: 101–108.PubMedCrossRef
47.
go back to reference Machi, J.F., D. da Silva Dias, S.C. Freitas, O.A. de Moraes, M.B. da Silva, P.L. Cruz, C. Mostarda, V.M. Salemi, M. Morris, and K. De Angelis. 2016. Impact of aging on cardiac function in a female rat model of menopause: Role of autonomic control, inflammation, and oxidative stress. Clinical Interventions in Aging 11: 341.PubMedPubMedCentralCrossRef Machi, J.F., D. da Silva Dias, S.C. Freitas, O.A. de Moraes, M.B. da Silva, P.L. Cruz, C. Mostarda, V.M. Salemi, M. Morris, and K. De Angelis. 2016. Impact of aging on cardiac function in a female rat model of menopause: Role of autonomic control, inflammation, and oxidative stress. Clinical Interventions in Aging 11: 341.PubMedPubMedCentralCrossRef
48.
go back to reference Hogarth, A.J., L.N. Graham, J.H. Corrigan, J. Deuchars, D.A. Mary, and J.P. Greenwood. 2011. Sympathetic nerve hyperactivity and its effect in postmenopausal women. Journal of hypertension 29: 2167–2175.PubMedCrossRef Hogarth, A.J., L.N. Graham, J.H. Corrigan, J. Deuchars, D.A. Mary, and J.P. Greenwood. 2011. Sympathetic nerve hyperactivity and its effect in postmenopausal women. Journal of hypertension 29: 2167–2175.PubMedCrossRef
49.
go back to reference Pradham, A., J. Manson, J. Rossouw, D. Siscovick, C. Mouton, N. Rifai, R. Wallace, R. Jackson, M. Pettinger, and P. Ridker. 2002. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease. JAMA 288: 980–987.CrossRef Pradham, A., J. Manson, J. Rossouw, D. Siscovick, C. Mouton, N. Rifai, R. Wallace, R. Jackson, M. Pettinger, and P. Ridker. 2002. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease. JAMA 288: 980–987.CrossRef
50.
go back to reference Ybañez-Julca, R.O., D. Asunción-Alvarez, J. Palacios, and C.R. Nwokocha. 2021. Maca extracts and estrogen replacement therapy in ovariectomized rats exposed at high altitude. Reproductive Medicine and Biology 20: 88–95.PubMedCrossRef Ybañez-Julca, R.O., D. Asunción-Alvarez, J. Palacios, and C.R. Nwokocha. 2021. Maca extracts and estrogen replacement therapy in ovariectomized rats exposed at high altitude. Reproductive Medicine and Biology 20: 88–95.PubMedCrossRef
51.
go back to reference Esmailidehaj, M., F. Kuchakzade, M.E. Rezvani, Z. Farhadi, H. Esmaeili, and H. Azizian. 2020. 17β-Estradiol improves insulin signalling and insulin resistance in the aged female hearts: Role of inflammatory and anti-inflammatory cytokines. Life sciences 253: 117673.PubMedCrossRef Esmailidehaj, M., F. Kuchakzade, M.E. Rezvani, Z. Farhadi, H. Esmaeili, and H. Azizian. 2020. 17β-Estradiol improves insulin signalling and insulin resistance in the aged female hearts: Role of inflammatory and anti-inflammatory cytokines. Life sciences 253: 117673.PubMedCrossRef
52.
go back to reference Hodgin, J.B., J.H. Krege, R.L. Reddick, K.S. Korach, O. Smithies, and N. Maeda. 2001. Estrogen receptor α is a major mediator of 17β-estradiol’s atheroprotective effects on lesion size in Apoe–/–mice. The Journal of clinical investigation 107: 333–340.PubMedPubMedCentralCrossRef Hodgin, J.B., J.H. Krege, R.L. Reddick, K.S. Korach, O. Smithies, and N. Maeda. 2001. Estrogen receptor α is a major mediator of 17β-estradiol’s atheroprotective effects on lesion size in Apoe–/–mice. The Journal of clinical investigation 107: 333–340.PubMedPubMedCentralCrossRef
53.
go back to reference Hodgin, J.B., and N. Maeda. 2002. Minireview: Estrogen and mouse models of atherosclerosis. Endocrinology 143: 4495–4501.PubMedCrossRef Hodgin, J.B., and N. Maeda. 2002. Minireview: Estrogen and mouse models of atherosclerosis. Endocrinology 143: 4495–4501.PubMedCrossRef
54.
go back to reference Persky, A.M., P.S. Greene, L. Stubley, C.O. Howell, L. Zaulyanov, G.A. Brazeau, and J.W. Simpkins. 2000. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro (44463). Proceedings of the Society for Experimental Biology and Medicine 223: 59–66.PubMedCrossRef Persky, A.M., P.S. Greene, L. Stubley, C.O. Howell, L. Zaulyanov, G.A. Brazeau, and J.W. Simpkins. 2000. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro (44463). Proceedings of the Society for Experimental Biology and Medicine 223: 59–66.PubMedCrossRef
55.
go back to reference Zhu, X., Z. Tang, B. Cong, J. Du, C. Wang, L. Wang, X. Ni, and J. Lu. 2013. Estrogens increase cystathionine-γ-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause 20: 1084–1091.PubMedCrossRef Zhu, X., Z. Tang, B. Cong, J. Du, C. Wang, L. Wang, X. Ni, and J. Lu. 2013. Estrogens increase cystathionine-γ-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause 20: 1084–1091.PubMedCrossRef
56.
go back to reference Hodis, H.N., W.J. Mack, V.W. Henderson, D. Shoupe, M.J. Budoff, J. Hwang-Levine, Y. Li, M. Feng, L. Dustin, and N. Kono. 2016. Vascular effects of early versus late postmenopausal treatment with estradiol. New England Journal of Medicine 374: 1221–1231.PubMedCrossRef Hodis, H.N., W.J. Mack, V.W. Henderson, D. Shoupe, M.J. Budoff, J. Hwang-Levine, Y. Li, M. Feng, L. Dustin, and N. Kono. 2016. Vascular effects of early versus late postmenopausal treatment with estradiol. New England Journal of Medicine 374: 1221–1231.PubMedCrossRef
57.
go back to reference Salpeter, S.R., J.M. Walsh, E. Greyber, and E.E. Salpeter. 2006. Brief report: Coronary heart disease events associated with hormone therapy in younger and older women. Journal of general internal medicine 21: 363–366.PubMedPubMedCentralCrossRef Salpeter, S.R., J.M. Walsh, E. Greyber, and E.E. Salpeter. 2006. Brief report: Coronary heart disease events associated with hormone therapy in younger and older women. Journal of general internal medicine 21: 363–366.PubMedPubMedCentralCrossRef
58.
go back to reference Schierbeck, L.L., L. Rejnmark, C.L. Tofteng, L. Stilgren, P. Eiken, L. Mosekilde, L. Køber and J.-E.B. Jensen. 2012. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. Bmj 345. Schierbeck, L.L., L. Rejnmark, C.L. Tofteng, L. Stilgren, P. Eiken, L. Mosekilde, L. Køber and J.-E.B. Jensen. 2012. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. Bmj 345.
59.
go back to reference van Baal, M.W., P. Kenemans, M.J. van der Mooren, H. Kessel, J.J. Emeis, and C.D. Stehouwer. 1999. Increased C-reactive protein levels during short-term hormone replacement therapy in healthy postmenopausal women. Thrombosis and haemostasis 81: 925–928.PubMedCrossRef van Baal, M.W., P. Kenemans, M.J. van der Mooren, H. Kessel, J.J. Emeis, and C.D. Stehouwer. 1999. Increased C-reactive protein levels during short-term hormone replacement therapy in healthy postmenopausal women. Thrombosis and haemostasis 81: 925–928.PubMedCrossRef
60.
go back to reference de Oliveira, S.G., E.R.G. Claudio, S.A. de Almeida, V. Mengal, F.B. da Silva, N.F. Silva, H. Mauad, and G.R. de Abreu. 2019. Exercise training improves vascular reactivity in ovariectomized rats subjected to myocardial infarction. PLoS ONE 14: e0215568.PubMedPubMedCentralCrossRef de Oliveira, S.G., E.R.G. Claudio, S.A. de Almeida, V. Mengal, F.B. da Silva, N.F. Silva, H. Mauad, and G.R. de Abreu. 2019. Exercise training improves vascular reactivity in ovariectomized rats subjected to myocardial infarction. PLoS ONE 14: e0215568.PubMedPubMedCentralCrossRef
61.
go back to reference Shimojo, G.L., and D.D. Silva Dias, C. Malfitano, I.C. Sanches, S. Llesuy, L. Ulloa, M.-C. Irigoyen and K. De Angelis. 2018. Combined aerobic and resistance exercise training improve hypertension associated with menopause. Frontiers in physiology 9: 1471.PubMedPubMedCentralCrossRef Shimojo, G.L., and D.D. Silva Dias, C. Malfitano, I.C. Sanches, S. Llesuy, L. Ulloa, M.-C. Irigoyen and K. De Angelis. 2018. Combined aerobic and resistance exercise training improve hypertension associated with menopause. Frontiers in physiology 9: 1471.PubMedPubMedCentralCrossRef
62.
go back to reference Szabó, R., D. Börzsei, Z. Karácsonyi, R. Gesztelyi, K. Nemes, A.M. Berkó, M. Veszelka, S. Török, K. Kupai, and C. Varga. 2019. Postconditioning-like effect of exercis: New paradigm in experimental menopause. American Journal of Physiology-Heart and Circulatory Physiology 316: H400–H407.PubMedCrossRef Szabó, R., D. Börzsei, Z. Karácsonyi, R. Gesztelyi, K. Nemes, A.M. Berkó, M. Veszelka, S. Török, K. Kupai, and C. Varga. 2019. Postconditioning-like effect of exercis: New paradigm in experimental menopause. American Journal of Physiology-Heart and Circulatory Physiology 316: H400–H407.PubMedCrossRef
63.
go back to reference Tang, Z., Y. Wang, X. Zhu, X. Ni, and J. Lu. 2016. Exercise increases cystathionine-γ-lyase expression and decreases the status of oxidative stress in myocardium of ovariectomized rats. International Heart Journal 57: 96–103.PubMedCrossRef Tang, Z., Y. Wang, X. Zhu, X. Ni, and J. Lu. 2016. Exercise increases cystathionine-γ-lyase expression and decreases the status of oxidative stress in myocardium of ovariectomized rats. International Heart Journal 57: 96–103.PubMedCrossRef
64.
go back to reference Varga, C., M. Veszelka, K. Kupai, D. Börzsei, Z. Deim, R. Szabó, S. Török, D. Priksz, R. Gesztelyi, and B. Juhász. 2018. The effects of exercise training and high triglyceride diet in an estrogen depleted rat model: The role of the heme oxygenase system and inflammatory processes in cardiovascular risk. Journal of sports science & medicine 17: 580. Varga, C., M. Veszelka, K. Kupai, D. Börzsei, Z. Deim, R. Szabó, S. Török, D. Priksz, R. Gesztelyi, and B. Juhász. 2018. The effects of exercise training and high triglyceride diet in an estrogen depleted rat model: The role of the heme oxygenase system and inflammatory processes in cardiovascular risk. Journal of sports science & medicine 17: 580.
65.
66.
go back to reference Wegge, J.K., C.K. Roberts, T.H. Ngo, and R.J. Barnard. 2004. Effect of diet and exercise intervention on inflammatory and adhesion molecules in postmenopausal women on hormone replacement therapy and at risk for coronary artery disease. Metabolism 53: 377–381.PubMedCrossRef Wegge, J.K., C.K. Roberts, T.H. Ngo, and R.J. Barnard. 2004. Effect of diet and exercise intervention on inflammatory and adhesion molecules in postmenopausal women on hormone replacement therapy and at risk for coronary artery disease. Metabolism 53: 377–381.PubMedCrossRef
67.
go back to reference Al-Nakkash, L., T. Janjulia, K. Peterson, D. Lucy, D. Wilson, A. Peterson, W. Prozialeck, and T. Broderick. 2014. Genistein and exercise do not improve cardiovascular risk factors in the ovariectomized rat. Climacteric 17: 136–147.PubMedCrossRef Al-Nakkash, L., T. Janjulia, K. Peterson, D. Lucy, D. Wilson, A. Peterson, W. Prozialeck, and T. Broderick. 2014. Genistein and exercise do not improve cardiovascular risk factors in the ovariectomized rat. Climacteric 17: 136–147.PubMedCrossRef
68.
go back to reference Almeida, S.A.d., E.R. Claudio, V. Mengal, G.A. Brasil, E. Merlo, P.L. Podratz, J.B. Graceli, S.A. Gouvea and G.R.d. Abreu. 2018. Estrogen therapy worsens cardiac function and remodeling and reverses the effects of exercise training after myocardial infarction in ovariectomized female rats. Frontiers in physiology 9: 1242.CrossRef Almeida, S.A.d., E.R. Claudio, V. Mengal, G.A. Brasil, E. Merlo, P.L. Podratz, J.B. Graceli, S.A. Gouvea and G.R.d. Abreu. 2018. Estrogen therapy worsens cardiac function and remodeling and reverses the effects of exercise training after myocardial infarction in ovariectomized female rats. Frontiers in physiology 9: 1242.CrossRef
69.
go back to reference Phungphong, S., A. Kijtawornrat, J. Wattanapermpool, and T. Bupha-Intr. 2016. Regular exercise modulates cardiac mast cell activation in ovariectomized rats. The Journal of Physiological Sciences 66: 165–173.PubMedCrossRef Phungphong, S., A. Kijtawornrat, J. Wattanapermpool, and T. Bupha-Intr. 2016. Regular exercise modulates cardiac mast cell activation in ovariectomized rats. The Journal of Physiological Sciences 66: 165–173.PubMedCrossRef
70.
go back to reference Bulut, E.C., L. Abueid, F. Ercan, S. Süleymanoğlu, M. Ağırbaşlı, and B.Ç. Yeğen. 2016. Treatment with oestrogen-receptor agonists or oxytocin in conjunction with exercise protects against myocardial infarction in ovariectomized rats. Experimental physiology 101: 612–627.PubMedCrossRef Bulut, E.C., L. Abueid, F. Ercan, S. Süleymanoğlu, M. Ağırbaşlı, and B.Ç. Yeğen. 2016. Treatment with oestrogen-receptor agonists or oxytocin in conjunction with exercise protects against myocardial infarction in ovariectomized rats. Experimental physiology 101: 612–627.PubMedCrossRef
71.
go back to reference Cancer, C.G.o.H.F.i.B. 2019. Type and timing of menopausal hormone therapy and breast cancer risk: Individual participant meta-analysis of the worldwide epidemiological evidence. The Lancet 394: 1159–1168.CrossRef Cancer, C.G.o.H.F.i.B. 2019. Type and timing of menopausal hormone therapy and breast cancer risk: Individual participant meta-analysis of the worldwide epidemiological evidence. The Lancet 394: 1159–1168.CrossRef
72.
go back to reference Lee, J.-Y., and D.-C. Lee. 2014. Urine 6-sulfatoxymelatonin levels are inversely associated with arterial stiffness in post-menopausal women. Maturitas 78: 117–122.PubMedCrossRef Lee, J.-Y., and D.-C. Lee. 2014. Urine 6-sulfatoxymelatonin levels are inversely associated with arterial stiffness in post-menopausal women. Maturitas 78: 117–122.PubMedCrossRef
73.
go back to reference Shafiei, E., M. Bahtoei, P. Raj, A. Ostovar, D. Iranpour, S. Akbarzadeh, H. Shahryari, A. Anvaripour, R. Tahmasebi, T. Netticadan, and A. Movahed. 2018. Effects of N-acetyl cysteine and melatonin on early reperfusion injury in patients undergoing coronary artery bypass grafting: A randomized, open-labeled, placebo-controlled trial. Medicine (Baltimore) 97: e11383.CrossRef Shafiei, E., M. Bahtoei, P. Raj, A. Ostovar, D. Iranpour, S. Akbarzadeh, H. Shahryari, A. Anvaripour, R. Tahmasebi, T. Netticadan, and A. Movahed. 2018. Effects of N-acetyl cysteine and melatonin on early reperfusion injury in patients undergoing coronary artery bypass grafting: A randomized, open-labeled, placebo-controlled trial. Medicine (Baltimore) 97: e11383.CrossRef
74.
go back to reference Tamura, H., Y. Nakamura, A. Narimatsu, Y. Yamagata, A. Takasaki, R.J. Reiter, and N. Sugino. 2008. Melatonin treatment in peri- and postmenopausal women elevates serum high-density lipoprotein cholesterol levels without influencing total cholesterol levels. Journal of Pineal Research 45: 101–105.PubMedCrossRef Tamura, H., Y. Nakamura, A. Narimatsu, Y. Yamagata, A. Takasaki, R.J. Reiter, and N. Sugino. 2008. Melatonin treatment in peri- and postmenopausal women elevates serum high-density lipoprotein cholesterol levels without influencing total cholesterol levels. Journal of Pineal Research 45: 101–105.PubMedCrossRef
75.
go back to reference Baxi, D.B., P.K. Singh, K.D. Vachhrajani, and A.V. Ramachandran. 2013. Melatonin supplementation in rat ameliorates ovariectomy-induced oxidative stress. Climacteric 16: 274–283.PubMedCrossRef Baxi, D.B., P.K. Singh, K.D. Vachhrajani, and A.V. Ramachandran. 2013. Melatonin supplementation in rat ameliorates ovariectomy-induced oxidative stress. Climacteric 16: 274–283.PubMedCrossRef
76.
go back to reference Turgut, O., A.A. Ay, H. Turgut, A. Ay, S. Kafkas, and T. Dost. 2013. Effects of melatonin and dexpanthenol on antioxidant parameters when combined with estrogen treatment in ovariectomized rats. Age (Dordrecht, Netherlands) 35: 2229–2235.CrossRef Turgut, O., A.A. Ay, H. Turgut, A. Ay, S. Kafkas, and T. Dost. 2013. Effects of melatonin and dexpanthenol on antioxidant parameters when combined with estrogen treatment in ovariectomized rats. Age (Dordrecht, Netherlands) 35: 2229–2235.CrossRef
77.
go back to reference Tengattini, S., R.J. Reiter, D.X. Tan, M.P. Terron, L.F. Rodella, and R. Rezzani. 2008. Cardiovascular diseases: Protective effects of melatonin. Journal of pineal research 44: 16–25.PubMed Tengattini, S., R.J. Reiter, D.X. Tan, M.P. Terron, L.F. Rodella, and R. Rezzani. 2008. Cardiovascular diseases: Protective effects of melatonin. Journal of pineal research 44: 16–25.PubMed
78.
go back to reference Broussy, S., H. Laaroussi, and M. Vidal. 2020. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat). Journal of enzyme inhibition and medicinal chemistry 35: 1124–1136.PubMedPubMedCentralCrossRef Broussy, S., H. Laaroussi, and M. Vidal. 2020. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat). Journal of enzyme inhibition and medicinal chemistry 35: 1124–1136.PubMedPubMedCentralCrossRef
79.
go back to reference Hsu, C.-P., P. Zhai, T. Yamamoto, Y. Maejima, S. Matsushima, N. Hariharan, D. Shao, H. Takagi, S. Oka, and J. Sadoshima. 2010. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122: 2170–2182.PubMedPubMedCentralCrossRef Hsu, C.-P., P. Zhai, T. Yamamoto, Y. Maejima, S. Matsushima, N. Hariharan, D. Shao, H. Takagi, S. Oka, and J. Sadoshima. 2010. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122: 2170–2182.PubMedPubMedCentralCrossRef
80.
go back to reference Singh, V. and S. Ubaid. 2020. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43. Singh, V. and S. Ubaid. 2020. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43.
81.
go back to reference Yang, Y., W. Duan, Y. Li, Z. Jin, J. Yan, S. Yu, and D. Yi. 2013. Novel role of silent information regulator 1 in myocardial ischemia. Circulation 128: 2232–2240.PubMedCrossRef Yang, Y., W. Duan, Y. Li, Z. Jin, J. Yan, S. Yu, and D. Yi. 2013. Novel role of silent information regulator 1 in myocardial ischemia. Circulation 128: 2232–2240.PubMedCrossRef
82.
go back to reference Han, D., W. Huang, X. Li, L. Gao, T. Su, X. Li, S. Ma, T. Liu, C. Li, and J. Chen. 2016. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. Journal of pineal research 60: 178–192.PubMedCrossRef Han, D., W. Huang, X. Li, L. Gao, T. Su, X. Li, S. Ma, T. Liu, C. Li, and J. Chen. 2016. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. Journal of pineal research 60: 178–192.PubMedCrossRef
83.
go back to reference Hardeland, R. 2018. Melatonin and inflammation—story of a double-edged blade. Journal of pineal research 65: e12525.PubMedCrossRef Hardeland, R. 2018. Melatonin and inflammation—story of a double-edged blade. Journal of pineal research 65: e12525.PubMedCrossRef
84.
go back to reference Savran, M., H. Asci, O. Ozmen, Y. Erzurumlu, H. Savas, Y. Sonmez, and Y. Sahin. 2019. Melatonin protects the heart and endothelium against high fructose corn syrup consumption–induced cardiovascular toxicity via SIRT-1 signaling. Human & experimental toxicology 38: 1212–1223.CrossRef Savran, M., H. Asci, O. Ozmen, Y. Erzurumlu, H. Savas, Y. Sonmez, and Y. Sahin. 2019. Melatonin protects the heart and endothelium against high fructose corn syrup consumption–induced cardiovascular toxicity via SIRT-1 signaling. Human & experimental toxicology 38: 1212–1223.CrossRef
85.
go back to reference Zhao, L., R. An, Y. Yang, X. Yang, H. Liu, L. Yue, X. Li, Y. Lin, R.J. Reiter, and Y. Qu. 2015. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: The role of SIRT 1 signaling. Journal of pineal research 59: 230–239.PubMedCrossRef Zhao, L., R. An, Y. Yang, X. Yang, H. Liu, L. Yue, X. Li, Y. Lin, R.J. Reiter, and Y. Qu. 2015. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: The role of SIRT 1 signaling. Journal of pineal research 59: 230–239.PubMedCrossRef
86.
go back to reference Chen, W., X. Chen, A.C. Chen, Q. Shi, G. Pan, M. Pei, H. Yang, T. Liu, and F. He. 2020. Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radical Biology and Medicine 146: 92–106.PubMedCrossRef Chen, W., X. Chen, A.C. Chen, Q. Shi, G. Pan, M. Pei, H. Yang, T. Liu, and F. He. 2020. Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radical Biology and Medicine 146: 92–106.PubMedCrossRef
87.
go back to reference Munmun, F. and P.A. Witt‐Enderby. 2021. Melatonin effects on bone: implications for use as a therapy for managing bone loss. Journal of pineal research e12749. Munmun, F. and P.A. Witt‐Enderby. 2021. Melatonin effects on bone: implications for use as a therapy for managing bone loss. Journal of pineal research e12749.
88.
go back to reference Favero, G., C. Franco, A. Stacchiotti, L.F. Rodella, and R. Rezzani. 2020. Sirtuin1 role in the melatonin protective effects against obesity-related heart injury. Frontiers in physiology 11: 103.PubMedPubMedCentralCrossRef Favero, G., C. Franco, A. Stacchiotti, L.F. Rodella, and R. Rezzani. 2020. Sirtuin1 role in the melatonin protective effects against obesity-related heart injury. Frontiers in physiology 11: 103.PubMedPubMedCentralCrossRef
89.
go back to reference Xia, L., C. Sun, H. Zhu, M. Zhai, L. Zhang, L. Jiang, P. Hou, J. Li, K. Li, and Z. Liu. 2020. Melatonin protects against thoracic aortic aneurysm and dissection through SIRT1-dependent regulation of oxidative stress and vascular smooth muscle cell loss. Journal of pineal research 69: e12661.PubMedCrossRef Xia, L., C. Sun, H. Zhu, M. Zhai, L. Zhang, L. Jiang, P. Hou, J. Li, K. Li, and Z. Liu. 2020. Melatonin protects against thoracic aortic aneurysm and dissection through SIRT1-dependent regulation of oxidative stress and vascular smooth muscle cell loss. Journal of pineal research 69: e12661.PubMedCrossRef
90.
go back to reference Sasaki, Y., Y. Ikeda, T. Miyauchi, Y. Uchikado, Y. Akasaki and M. Ohishi. 2019. Estrogen-SIRT1 axis plays a pivotal role in protecting arteries against menopause-induced senescence and atherosclerosis. Journal of atherosclerosis and thrombosis 47993. Sasaki, Y., Y. Ikeda, T. Miyauchi, Y. Uchikado, Y. Akasaki and M. Ohishi. 2019. Estrogen-SIRT1 axis plays a pivotal role in protecting arteries against menopause-induced senescence and atherosclerosis. Journal of atherosclerosis and thrombosis 47993.
91.
go back to reference Karthik, L., G. Kumar, T. Keswani, A. Bhattacharyya, S.S. Chandar, and K. Bhaskara Rao. 2014. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS ONE 9: e90972.PubMedPubMedCentralCrossRef Karthik, L., G. Kumar, T. Keswani, A. Bhattacharyya, S.S. Chandar, and K. Bhaskara Rao. 2014. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS ONE 9: e90972.PubMedPubMedCentralCrossRef
92.
go back to reference Yaffe, K., E. Vittinghoff, M.J. Pletcher, T.D. Hoang, L.J. Launer, R.A. Whitmer, L.H. Coker, and S. Sidney. 2014. Early adult to midlife cardiovascular risk factors and cognitive function. Circulation 129: 1560–1567.PubMedPubMedCentralCrossRef Yaffe, K., E. Vittinghoff, M.J. Pletcher, T.D. Hoang, L.J. Launer, R.A. Whitmer, L.H. Coker, and S. Sidney. 2014. Early adult to midlife cardiovascular risk factors and cognitive function. Circulation 129: 1560–1567.PubMedPubMedCentralCrossRef
93.
go back to reference Kodama, S., S. Tanaka, K. Saito, M. Shu, Y. Sone, F. Onitake, E. Suzuki, H. Shimano, S. Yamamoto, K. Kondo, Y. Ohashi, N. Yamada, and H. Sone. 2007. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Archives of internal medicine 167 (10): 999–1008.PubMedCrossRef Kodama, S., S. Tanaka, K. Saito, M. Shu, Y. Sone, F. Onitake, E. Suzuki, H. Shimano, S. Yamamoto, K. Kondo, Y. Ohashi, N. Yamada, and H. Sone. 2007. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Archives of internal medicine 167 (10): 999–1008.PubMedCrossRef
94.
go back to reference Hodson, L., K. Harnden, R. Banerjee, B. Real, K. Marinou, F. Karpe, and B.A. Fielding. 2014. Lower resting and total energy expenditure in postmenopausal compared with premenopausal women matched for abdominal obesity. Journal of nutritional science 3: e3.PubMedPubMedCentralCrossRef Hodson, L., K. Harnden, R. Banerjee, B. Real, K. Marinou, F. Karpe, and B.A. Fielding. 2014. Lower resting and total energy expenditure in postmenopausal compared with premenopausal women matched for abdominal obesity. Journal of nutritional science 3: e3.PubMedPubMedCentralCrossRef
95.
go back to reference Sanchez-Mateos, S., C. Alonso-Gonzalez, A. Gonzalez, C.M. Martinez-Campa, M.D. Mediavilla, S. Cos, and E.J. Sanchez-Barcelo. 2007. Melatonin and estradiol effects on food intake, body weight, and leptin in ovariectomized rats. Maturitas 58 (1): 91–101.PubMedCrossRef Sanchez-Mateos, S., C. Alonso-Gonzalez, A. Gonzalez, C.M. Martinez-Campa, M.D. Mediavilla, S. Cos, and E.J. Sanchez-Barcelo. 2007. Melatonin and estradiol effects on food intake, body weight, and leptin in ovariectomized rats. Maturitas 58 (1): 91–101.PubMedCrossRef
Metadata
Title
Melatonin Alleviates Ovariectomy-Induced Cardiovascular Inflammation in Sedentary or Exercised Rats by Upregulating SIRT1
Authors
Sevil Arabacı Tamer
Tülin Altınoluk
Miray Emran
Seda Korkmaz
Rozerin Göze Yüksel
Zeynep Baykal
Zehra Sena Dur
Hilal Nişva Levent
Mürüvvet Abbak Ural
Meral Yüksel
Özge Çevik
Feriha Ercan
Alper Yıldırım
Berrak Ç. Yeğen
Publication date
04-06-2022
Publisher
Springer US
Keyword
Estradiol
Published in
Inflammation / Issue 6/2022
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01685-2

Other articles of this Issue 6/2022

Inflammation 6/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine