Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2010

Open Access 01-12-2010 | Research

Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles

Authors: Xuesong Wen, Dong Li, Amanda J Tozer, Suzanne M Docherty, Ray K Iles

Published in: Reproductive Biology and Endocrinology | Issue 1/2010

Login to get access

Abstract

Background

The production of sex steroids by follicular cells is proposed to be influenced by the maturity of the incumbent oocyte. Thus steroid levels may reflect suitability of an oocyte for IVF. We examined follicular fluids and granulosa cell production of steroid from IVF patients in order to test the relationship between steroid levels and fertilization.

Methods

Follicular fluid and granulosa cells were extracted from 206 follicles of 35 women undergoing controlled ovarian stimulation. Follicular fluid was assayed for estradiol, progesterone and testosterone. Granulosa cells were cultured from individual follicles and their culture media assayed for production of these hormones after 24 hrs in vitro. Levels of steroids were correlated with follicular diameter, oocyte recovery and subsequent fertilization.

Results

Follicular fluid levels of progesterone were 6100 times higher than that of estradiol, and 16,900 times higher that of testosterone. Despite the size of follicle triggered after controlled luteinisation, the levels of progesterone and testosterone were maintained at relatively constant levels (median 98.1 micromoles/L for progesterone, and 5.8 nanomoles/L for testosterone). However, estradiol levels were slightly lower in the larger follicles (follicular diameter 10-15 mm, median 25.3 nanomoles/L; follicles > = 15 mm, median 15.1 nanomoles/L; linear correlation r = -0.47, p < 0.0001). With respect to oocyte recovery, no steroid showed a significant association in follicular fluid levels. Similarly no difference in follicular fluid steroid levels was found for those oocytes that did or did not fertilize. Significant quantities of progesterone were produced by the granulosa cells but production was constant regardless of the size of follicle from which the cells originated. Estradiol levels were only detectable in 10 of 121 cultures examined, and testosterone in none. Interestingly, when an oocyte was present follicular estradiol levels correlated with progesterone levels. However, when absent, follicular estradiol levels correlated with testosterone levels but not with progesterone.

Conclusions

The principle steroid product of luteinized pre-ovulatory granulosa is progesterone, a differentiation triggered by the gonadotropin surge. However, absolute steroid levels are associated with follicular size, not oocyte maturation/ability to fertilize.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gómez E, Tarín JJ, Pellicer A: Oocytes maturation in humans: the role of gonadotrophins and growth factors. Fertil Steril. 1993, 60: 40-46.PubMed Gómez E, Tarín JJ, Pellicer A: Oocytes maturation in humans: the role of gonadotrophins and growth factors. Fertil Steril. 1993, 60: 40-46.PubMed
2.
go back to reference Johnson MH, Everitt BJ: Adult ovarian function. Essential Reproduction. Edited by: Johnson MH, Everitt BJ. 2000, Oxford: Blackwell Science, 74-75. 5 Johnson MH, Everitt BJ: Adult ovarian function. Essential Reproduction. Edited by: Johnson MH, Everitt BJ. 2000, Oxford: Blackwell Science, 74-75. 5
3.
go back to reference Wen X, Tozer AJ, Butler SA, Bell CM, Docherty SM, Iles RK: Follicular Fluid levels of Inhibin A, inhibin B and activin A levels reflect changes in follicle size but are not independent markers of oocyte ability to fertilize. Fertil Steril. 2006, 8: 1723-1729. 10.1016/j.fertnstert.2005.11.058.CrossRef Wen X, Tozer AJ, Butler SA, Bell CM, Docherty SM, Iles RK: Follicular Fluid levels of Inhibin A, inhibin B and activin A levels reflect changes in follicle size but are not independent markers of oocyte ability to fertilize. Fertil Steril. 2006, 8: 1723-1729. 10.1016/j.fertnstert.2005.11.058.CrossRef
4.
go back to reference Wen X, Tozer AJ, Li D, Docherty SM, Al-Sharwaf T, Iles RK: Human granulosa-lutein cell in vitro production of progesterone, inhibin-A, inhibin-B and activin-A are dependent on follicular size and not the presence of the oocyte. Fertil Steril. 2008, 89: 1406-1413. 10.1016/j.fertnstert.2007.03.086.CrossRefPubMed Wen X, Tozer AJ, Li D, Docherty SM, Al-Sharwaf T, Iles RK: Human granulosa-lutein cell in vitro production of progesterone, inhibin-A, inhibin-B and activin-A are dependent on follicular size and not the presence of the oocyte. Fertil Steril. 2008, 89: 1406-1413. 10.1016/j.fertnstert.2007.03.086.CrossRefPubMed
5.
go back to reference Karam KS, Taymor ML, Berger MJ: Estrogen monitoring and the prevention of ovarian overstimulation during gonadotrophin therapy. Am J Obstet Gynecol. 1973, 115: 972-977.PubMed Karam KS, Taymor ML, Berger MJ: Estrogen monitoring and the prevention of ovarian overstimulation during gonadotrophin therapy. Am J Obstet Gynecol. 1973, 115: 972-977.PubMed
6.
go back to reference Sckenker JG, Weinstein D: Ovarian Hyperstimulation Syndrome: a current surrey. Fertil Steril. 1978, 30: 255-268. Sckenker JG, Weinstein D: Ovarian Hyperstimulation Syndrome: a current surrey. Fertil Steril. 1978, 30: 255-268.
7.
go back to reference McArdle C, Seibel M, Hann LE, Weinstein F, Taymor M: The diagnosis of ovarian hyperstimulation (OHS): the impact of ultrasound. Fertil Steril. 1983, 39: 464-467.PubMed McArdle C, Seibel M, Hann LE, Weinstein F, Taymor M: The diagnosis of ovarian hyperstimulation (OHS): the impact of ultrasound. Fertil Steril. 1983, 39: 464-467.PubMed
8.
go back to reference Mikkelsen AL, Smith S, Lindenberg S: Impact of estradiol and inhibin A concentrations on pregnancy rate in in-vitro oocyte maturation. Hum Reprod. 2000, 15: 1685-1690. 10.1093/humrep/15.8.1685.CrossRefPubMed Mikkelsen AL, Smith S, Lindenberg S: Impact of estradiol and inhibin A concentrations on pregnancy rate in in-vitro oocyte maturation. Hum Reprod. 2000, 15: 1685-1690. 10.1093/humrep/15.8.1685.CrossRefPubMed
9.
go back to reference Ryan KJ, Smith OW: Biogenesis of estrogens by the human ovary I. Conversion of acetate-1-C-14 to estrone and estradiol. J Biol Chem. 1961, 236: 705-709.PubMed Ryan KJ, Smith OW: Biogenesis of estrogens by the human ovary I. Conversion of acetate-1-C-14 to estrone and estradiol. J Biol Chem. 1961, 236: 705-709.PubMed
10.
go back to reference Ryan KJ, Smith OW: Biogenesis of estrogens by the human ovary. II. Conversion of progesterone-4-C-14 to estrone and estradiol. J Biol Chem. 1961, 236: 710-714.PubMed Ryan KJ, Smith OW: Biogenesis of estrogens by the human ovary. II. Conversion of progesterone-4-C-14 to estrone and estradiol. J Biol Chem. 1961, 236: 710-714.PubMed
11.
go back to reference Falck B: Site of production of oestrogen on rate ovary as studied in micro-transplants. Acta Physiol Scand. 1959, 474 (Suppl 163): 1-101. Falck B: Site of production of oestrogen on rate ovary as studied in micro-transplants. Acta Physiol Scand. 1959, 474 (Suppl 163): 1-101.
12.
go back to reference Channing CP, Coudert SP: Contribution of granulosa cells and follicular fluid to ovarian estrogen secretion in rhesus monkey in vivo. Endocrinology. 1976, 98: 590-597. 10.1210/endo-98-3-590.CrossRefPubMed Channing CP, Coudert SP: Contribution of granulosa cells and follicular fluid to ovarian estrogen secretion in rhesus monkey in vivo. Endocrinology. 1976, 98: 590-597. 10.1210/endo-98-3-590.CrossRefPubMed
13.
go back to reference Armstrong DT, Goff AK, Dorrington JH: Regulation of follicular estrogen biosynthesis. Ovarian Follicular Development and Function. Edited by: Midgley AR and Sadler WA. 1979, New York: Raven Press, 169-182. Armstrong DT, Goff AK, Dorrington JH: Regulation of follicular estrogen biosynthesis. Ovarian Follicular Development and Function. Edited by: Midgley AR and Sadler WA. 1979, New York: Raven Press, 169-182.
14.
go back to reference Hillier SG, Whitelaw PF, Smyth CD: Follicular oestrogen synthesis: the 'two-cell, two-gonadotrophin' model revisited. Mol Cell Endocrinol. 1994, 100: 51-54. 10.1016/0303-7207(94)90278-X.CrossRefPubMed Hillier SG, Whitelaw PF, Smyth CD: Follicular oestrogen synthesis: the 'two-cell, two-gonadotrophin' model revisited. Mol Cell Endocrinol. 1994, 100: 51-54. 10.1016/0303-7207(94)90278-X.CrossRefPubMed
15.
go back to reference Hillier SG: Sex steroid metabolism and follicular development in the ovary. Oxf Rev Reprod Biol. 1985, 7: 168-222.PubMed Hillier SG: Sex steroid metabolism and follicular development in the ovary. Oxf Rev Reprod Biol. 1985, 7: 168-222.PubMed
16.
go back to reference Ryan KJ, Petro Z: Steroid biosynthesis by human ovarian granulosa and theca cells. J Clin Endocrinolo Metab. 1966, 26: 46-52. 10.1210/jcem-26-1-46.CrossRef Ryan KJ, Petro Z: Steroid biosynthesis by human ovarian granulosa and theca cells. J Clin Endocrinolo Metab. 1966, 26: 46-52. 10.1210/jcem-26-1-46.CrossRef
17.
go back to reference Ojeda SR: Female Reproductive Function. Text Book Endocrine Physiology. Edited by: Graffin JE and Ojeda SR. 2004, Oxford, New York: Oxford University Press, 186-225. 5 Ojeda SR: Female Reproductive Function. Text Book Endocrine Physiology. Edited by: Graffin JE and Ojeda SR. 2004, Oxford, New York: Oxford University Press, 186-225. 5
18.
go back to reference Pelletier G, Li S, Luu-The V, Tremblay Y, Bélanger A, Labrie F: Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450scc, 3β-hydroxysteroid dehydrogenase and cytochrome P450c17) in rat adrenal cortex and gonads. J Endocrinol. 2001, 171: 373-383. 10.1677/joe.0.1710373.CrossRefPubMed Pelletier G, Li S, Luu-The V, Tremblay Y, Bélanger A, Labrie F: Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450scc, 3β-hydroxysteroid dehydrogenase and cytochrome P450c17) in rat adrenal cortex and gonads. J Endocrinol. 2001, 171: 373-383. 10.1677/joe.0.1710373.CrossRefPubMed
19.
go back to reference Payne AH, Hales DB: Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. Endocr Rev. 2003, 25: 947-970. 10.1210/er.2003-0030.CrossRef Payne AH, Hales DB: Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. Endocr Rev. 2003, 25: 947-970. 10.1210/er.2003-0030.CrossRef
20.
go back to reference Corbin CJ, Moran FM, Vidal JD, Ford JJ, Wise T, Mapes SM, Njar VC, Brodie AM: Biochemical assessment of limits to estrogen synthesis in porcine follicles. Biol Reprod. 2003, 69: 390-397. 10.1095/biolreprod.103.015578.CrossRefPubMed Corbin CJ, Moran FM, Vidal JD, Ford JJ, Wise T, Mapes SM, Njar VC, Brodie AM: Biochemical assessment of limits to estrogen synthesis in porcine follicles. Biol Reprod. 2003, 69: 390-397. 10.1095/biolreprod.103.015578.CrossRefPubMed
21.
go back to reference Haines CJ, Emes AL: The relationship between follicle diameter, fertilization rate and microscopic embryo quality. Fertil Steril. 1991, 55: 205-207.PubMed Haines CJ, Emes AL: The relationship between follicle diameter, fertilization rate and microscopic embryo quality. Fertil Steril. 1991, 55: 205-207.PubMed
22.
go back to reference deMoura MD, Choi D, Adashi EY, Payne DW: Insulin-like growth factor-1-mediated amplication of the follicle-stimulating hormone supported progesterone accumulation by cultured rat granulosa cells: enhancement of steroidogenic enzyme activity and expression. Biol Reprod. 1997, 56: 946-953. 10.1095/biolreprod56.4.946.CrossRefPubMed deMoura MD, Choi D, Adashi EY, Payne DW: Insulin-like growth factor-1-mediated amplication of the follicle-stimulating hormone supported progesterone accumulation by cultured rat granulosa cells: enhancement of steroidogenic enzyme activity and expression. Biol Reprod. 1997, 56: 946-953. 10.1095/biolreprod56.4.946.CrossRefPubMed
23.
go back to reference Eimerl S, Orly J: Regulation of steroidogenic genes by insulin-like growth factor -1 and follicle- stimulating hormone: differential responses of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, and 3β hydroxysteroid dehydrogenase/isomerase in rate granulosa cells. Bio reprod. 2002, 67: 900-910. 10.1095/biolreprod.101.002170.CrossRef Eimerl S, Orly J: Regulation of steroidogenic genes by insulin-like growth factor -1 and follicle- stimulating hormone: differential responses of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, and 3β hydroxysteroid dehydrogenase/isomerase in rate granulosa cells. Bio reprod. 2002, 67: 900-910. 10.1095/biolreprod.101.002170.CrossRef
24.
go back to reference Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH: Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev. 2005, 26: 525-582. 10.1210/er.2002-0050.CrossRefPubMed Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH: Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev. 2005, 26: 525-582. 10.1210/er.2002-0050.CrossRefPubMed
25.
go back to reference Peltoketo H, Luu-The V, Simard J, Adamski J: 17β-hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes. J Mol Endocrinol. 1999, 23: 1-11. 10.1677/jme.0.0230001.CrossRefPubMed Peltoketo H, Luu-The V, Simard J, Adamski J: 17β-hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes. J Mol Endocrinol. 1999, 23: 1-11. 10.1677/jme.0.0230001.CrossRefPubMed
26.
go back to reference Labrie F, Luu-The V, Labrie C, Simard J: DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001, 22: 185-212. 10.1006/frne.2001.0216.CrossRefPubMed Labrie F, Luu-The V, Labrie C, Simard J: DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001, 22: 185-212. 10.1006/frne.2001.0216.CrossRefPubMed
27.
go back to reference Eppig JJ, Wigglesworth K, O'Brien MJ: Developmental capacity of mouse oocytes matured in vitro effects of gonadotrophic stimulation, follicular origin and oocyte size. J Reprod Fertil. 1992, 95: 119-127. 10.1530/jrf.0.0950119.CrossRefPubMed Eppig JJ, Wigglesworth K, O'Brien MJ: Developmental capacity of mouse oocytes matured in vitro effects of gonadotrophic stimulation, follicular origin and oocyte size. J Reprod Fertil. 1992, 95: 119-127. 10.1530/jrf.0.0950119.CrossRefPubMed
28.
go back to reference Tsuji K, Sowa M, Nakano R: Relationship between human oocyte maturation and different follicular size. Biol Reprod. 1985, 32: 413-417. 10.1095/biolreprod32.2.413.CrossRefPubMed Tsuji K, Sowa M, Nakano R: Relationship between human oocyte maturation and different follicular size. Biol Reprod. 1985, 32: 413-417. 10.1095/biolreprod32.2.413.CrossRefPubMed
29.
go back to reference Durinzi KL, Saniga EM, Lanzendorf SE: The relationship between size and maturation in vitro in the unstimulated human oocyte. Fertil Steril. 1995, 63: 404-406.PubMed Durinzi KL, Saniga EM, Lanzendorf SE: The relationship between size and maturation in vitro in the unstimulated human oocyte. Fertil Steril. 1995, 63: 404-406.PubMed
30.
go back to reference Whitacre KS, Seifer DB, Friedman CI, Coskun S, Kenard KA, Kim MH, Alak BM: Effects of ovarian source, patients age and menstrual cycle phase on in-vitro maturation of immature human oocytes. Fertil Steril. 1998, 70: 1015-1021. 10.1016/S0015-0282(98)00339-2.CrossRefPubMed Whitacre KS, Seifer DB, Friedman CI, Coskun S, Kenard KA, Kim MH, Alak BM: Effects of ovarian source, patients age and menstrual cycle phase on in-vitro maturation of immature human oocytes. Fertil Steril. 1998, 70: 1015-1021. 10.1016/S0015-0282(98)00339-2.CrossRefPubMed
31.
go back to reference MaNatty KP, Makris A, Reinhold VN, De Grazia C, Osathanodth R, Ryan K: Metabolism of androstenedione by human ovarian tissues in vitro with particular reference to reductase and aromatase activity. Steroids. 1979, 34: 429-443. 10.1016/0039-128X(79)90104-1.CrossRef MaNatty KP, Makris A, Reinhold VN, De Grazia C, Osathanodth R, Ryan K: Metabolism of androstenedione by human ovarian tissues in vitro with particular reference to reductase and aromatase activity. Steroids. 1979, 34: 429-443. 10.1016/0039-128X(79)90104-1.CrossRef
32.
go back to reference Wittmaak FM, Kreger DO, Blasco L, Tureck RW, Mastroianni L, Lessey BA: Effect of follicular size on oocyte retrieval, fertilization, cleavage and embryo quality in in-vitro fertilization cycles: a 6-year data collection. Fertility and Sterility. 1994, 62: 1205-1210. Wittmaak FM, Kreger DO, Blasco L, Tureck RW, Mastroianni L, Lessey BA: Effect of follicular size on oocyte retrieval, fertilization, cleavage and embryo quality in in-vitro fertilization cycles: a 6-year data collection. Fertility and Sterility. 1994, 62: 1205-1210.
33.
go back to reference Dubey AK, Wang HA, Duffy P, Penzias AS: The correlation between follicular measurements, oocyte morphology and fertilization rates in an in vitro fertilization programme. Fertil Steril. 1995, 64: 787-790.PubMed Dubey AK, Wang HA, Duffy P, Penzias AS: The correlation between follicular measurements, oocyte morphology and fertilization rates in an in vitro fertilization programme. Fertil Steril. 1995, 64: 787-790.PubMed
34.
go back to reference Salha O, Nugent D, Dada T, Kaufmann S, Levett S, Jenner L, Lue S, Sharma V: The relationship between follicular fluid aspirate volume and oocyte maturity in in-vitro fertilization cycles. Hum Reprod. 1998, 13: 1901-1906. 10.1093/humrep/13.7.1901.CrossRefPubMed Salha O, Nugent D, Dada T, Kaufmann S, Levett S, Jenner L, Lue S, Sharma V: The relationship between follicular fluid aspirate volume and oocyte maturity in in-vitro fertilization cycles. Hum Reprod. 1998, 13: 1901-1906. 10.1093/humrep/13.7.1901.CrossRefPubMed
35.
go back to reference Teissier MP, Chable H, Paulhac S, Aubard Y: Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod. 2000, 15: 2471-2477. 10.1093/humrep/15.12.2471.CrossRefPubMed Teissier MP, Chable H, Paulhac S, Aubard Y: Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod. 2000, 15: 2471-2477. 10.1093/humrep/15.12.2471.CrossRefPubMed
36.
go back to reference Diamond MP, Wentz AC: Ovarian induction with human menopausal gonadotrophins. Obstet Gynecol Surv. 1986, 41: 480-490.PubMed Diamond MP, Wentz AC: Ovarian induction with human menopausal gonadotrophins. Obstet Gynecol Surv. 1986, 41: 480-490.PubMed
37.
go back to reference Ellsworth LR, Balmaceda JP, Schenken RS, Silverman AY, Prihoda TJ, Asch RH: Human chorionic gonadotrophin and steroid concentrations in human follicular fluid in relation to follicular size and oocyte maturity in stimulated ovarian cycles. Acta Eur Fertil. 1984, 15: 343-346.PubMed Ellsworth LR, Balmaceda JP, Schenken RS, Silverman AY, Prihoda TJ, Asch RH: Human chorionic gonadotrophin and steroid concentrations in human follicular fluid in relation to follicular size and oocyte maturity in stimulated ovarian cycles. Acta Eur Fertil. 1984, 15: 343-346.PubMed
38.
go back to reference Kreiner D, Liu HC, Itskovitz J, Veeck L, Rosenwaks Z: Follicular fluid oestradiol and progesterone are markers of preovulatory oocyte quality. Fertil Steril. 1987, 48: 991-994.PubMed Kreiner D, Liu HC, Itskovitz J, Veeck L, Rosenwaks Z: Follicular fluid oestradiol and progesterone are markers of preovulatory oocyte quality. Fertil Steril. 1987, 48: 991-994.PubMed
39.
go back to reference Artini PG, Battaglia C, D'Ambrogio G, Barreca A, Droghini F, Volpe A, Genazzani AR: Relationship between human oocyte maturity, fertilization and follicular fluid growth factors. Hum Reprod. 1994, 9: 902-906.PubMed Artini PG, Battaglia C, D'Ambrogio G, Barreca A, Droghini F, Volpe A, Genazzani AR: Relationship between human oocyte maturity, fertilization and follicular fluid growth factors. Hum Reprod. 1994, 9: 902-906.PubMed
40.
go back to reference Mendoza C, Cremades N, Ruiz-Requena E, Martinez F, Ortega E, Bernabeu S, Tesarik J: Relationship between fertilization results after intracytoplasmic sperm injection, and intra-follicular steroid, pituitary hormone, and cytokine concentrations. Hum Reprod. 1999, 14: 628-635. 10.1093/humrep/14.3.628.CrossRefPubMed Mendoza C, Cremades N, Ruiz-Requena E, Martinez F, Ortega E, Bernabeu S, Tesarik J: Relationship between fertilization results after intracytoplasmic sperm injection, and intra-follicular steroid, pituitary hormone, and cytokine concentrations. Hum Reprod. 1999, 14: 628-635. 10.1093/humrep/14.3.628.CrossRefPubMed
41.
go back to reference Cook B, Huntert RHF, Kelly ASL: Steroid-binding proteins in follicular fluid and peripheral plasma from pigs, cows and sheep. J Reprod Fert. 1977, 51: 65-71. 10.1530/jrf.0.0510065.CrossRef Cook B, Huntert RHF, Kelly ASL: Steroid-binding proteins in follicular fluid and peripheral plasma from pigs, cows and sheep. J Reprod Fert. 1977, 51: 65-71. 10.1530/jrf.0.0510065.CrossRef
Metadata
Title
Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles
Authors
Xuesong Wen
Dong Li
Amanda J Tozer
Suzanne M Docherty
Ray K Iles
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2010
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-8-117

Other articles of this Issue 1/2010

Reproductive Biology and Endocrinology 1/2010 Go to the issue