Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Establishing a relationship between prolactin and altered fatty acid β-Oxidation via carnitine palmitoyl transferase 1 in breast cancer cells

Authors: Katja Linher-Melville, Stephanie Zantinge, Toran Sanli, Hertzel Gerstein, Theodoros Tsakiridis, Gurmit Singh

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Mammary carcinomas have been associated with a high-fat diet, and the rate of breast cancer in overweight post-menopausal women is up to 50% higher than in their normal-weight counterparts. Epidemiological studies suggest that prolactin (PRL) plays a role in the progression of breast cancer. The current study examined breast cancer as a metabolic disease in the context of altered fatty acid catabolism by examining the effect of PRL on carnitine palmitoyl transferase 1 (CPT1), an enzyme that shuttles long-chain fatty acids into the mitochondrial matrix for β-oxidation. The effect of PRL on the adenosine 5'-monophosphate-activated protein kinase (AMPK) energy sensing pathway was also investigated.

Methods

MCF-7 and MDA-MB-231 breast cancer cells and 184B5 normal breast epithelial cells treated with 100 ng/ml of PRL for 24 hr were used as in vitro models. Real-time PCR was employed to quantify changes in mRNA levels and Western blotting was carried out to evaluate changes at the protein level. A non-radioactive CPT1 enzyme activity assay was established and siRNA transfections were performed to transiently knock down specific targets in the AMPK pathway.

Results

PRL stimulation increased the expression of CPT1A (liver isoform) at the mRNA and protein levels in both breast cancer cell lines, but not in 184B5 cells. In response to PRL, a 20% increase in CPT1 enzyme activity was observed in MDA-MB-231 cells. PRL treatment resulted in increased phosphorylation of the α catalytic subunit of AMPK at Thr172, as well as phosphorylation of acetyl-CoA carboxylase (ACC) at Ser79. A siRNA against liver kinase B1 (LKB1) reversed these effects in breast cancer cells. PRL partially restored CPT1 activity in breast cancer cells in which CPT1A, LKB1, or AMPKα-1 were knocked down.

Conclusions

PRL enhances fatty acid β-oxidation by stimulating CPT1 expression and/or activity in MCF-7 and MDA-MB-231 breast cancer cells. These PRL-mediated effects are partially dependent on the LKB1-AMPK pathway, although the regulation of CPT1 is also likely to be influenced by other mechanisms. Ultimately, increased CPT1 enzyme activity may contribute to fueling the high energy demands of cancer cells. Targeting metabolic pathways that are governed by PRL, which has already been implicated in the progression of breast cancer, may be of therapeutic benefit.
Appendix
Available only for authorised users
Literature
1.
go back to reference Binart N, Ormandy CJ, Kelly PA: Mammary gland development and the prolactin receptor. Adv Exp Med Biol. 2000, 480: 85-92. full_text.CrossRefPubMed Binart N, Ormandy CJ, Kelly PA: Mammary gland development and the prolactin receptor. Adv Exp Med Biol. 2000, 480: 85-92. full_text.CrossRefPubMed
2.
3.
go back to reference Anderson E, Ferguson JE, Morten H, Shalet SM, Robinson EL, Howell A: Serum immunoreactive and bioactive lactogenic hormones in advanced breast cancer patients treated with bromocriptine and octreotide. Eur J Cancer. 1993, 29A (2): 209-217. 10.1016/0959-8049(93)90178-I.CrossRefPubMed Anderson E, Ferguson JE, Morten H, Shalet SM, Robinson EL, Howell A: Serum immunoreactive and bioactive lactogenic hormones in advanced breast cancer patients treated with bromocriptine and octreotide. Eur J Cancer. 1993, 29A (2): 209-217. 10.1016/0959-8049(93)90178-I.CrossRefPubMed
4.
go back to reference Fields K, Kulig E, Lloyd RV: Detection of prolactin messenger RNA in mammary and other normal and neoplastic tissues by polymerase chain reaction. Lab Invest. 1993, 68 (3): 354-360.PubMed Fields K, Kulig E, Lloyd RV: Detection of prolactin messenger RNA in mammary and other normal and neoplastic tissues by polymerase chain reaction. Lab Invest. 1993, 68 (3): 354-360.PubMed
5.
go back to reference Clevenger CV, Chang WP, Ngo W, Pasha TL, Montone KT, Tomaszewski JE: Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol. 1995, 146 (3): 695-705.PubMedPubMedCentral Clevenger CV, Chang WP, Ngo W, Pasha TL, Montone KT, Tomaszewski JE: Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol. 1995, 146 (3): 695-705.PubMedPubMedCentral
6.
go back to reference Ginsburg E, Vonderhaar BK: Prolactin synthesis and secretion by human breast cancer cells. Cancer Res. 1995, 55 (12): 2591-2595.PubMed Ginsburg E, Vonderhaar BK: Prolactin synthesis and secretion by human breast cancer cells. Cancer Res. 1995, 55 (12): 2591-2595.PubMed
7.
go back to reference Ramamoorthy P, Sticca R, Wagner TE, Chen WY: In vitro studies of a prolactin antagonist, hPRL-G129R in human breast cancer cells. Int J Oncol. 2001, 18 (1): 25-32.PubMed Ramamoorthy P, Sticca R, Wagner TE, Chen WY: In vitro studies of a prolactin antagonist, hPRL-G129R in human breast cancer cells. Int J Oncol. 2001, 18 (1): 25-32.PubMed
8.
go back to reference Rudolph MC, Neville MC, Anderson SM: Lipid synthesis in lactation: diet and the fatty acid switch. J Mammary Gland Biol Neoplasia. 2007, 12 (4): 269-281. 10.1007/s10911-007-9061-5.CrossRefPubMed Rudolph MC, Neville MC, Anderson SM: Lipid synthesis in lactation: diet and the fatty acid switch. J Mammary Gland Biol Neoplasia. 2007, 12 (4): 269-281. 10.1007/s10911-007-9061-5.CrossRefPubMed
9.
go back to reference Anderson SM, Rudolph MC, McManaman JL, Neville MC: Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis!. Breast Cancer Res. 2007, 9 (1): 204-10.1186/bcr1653.CrossRefPubMedPubMedCentral Anderson SM, Rudolph MC, McManaman JL, Neville MC: Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis!. Breast Cancer Res. 2007, 9 (1): 204-10.1186/bcr1653.CrossRefPubMedPubMedCentral
10.
go back to reference Mao J, Molenaar AJ, Wheeler TT, Seyfert HM: STAT5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxylase alpha-encoding gene in the mammary gland. J Mol Endocrinol. 2002, 29 (1): 73-88. 10.1677/jme.0.0290073.CrossRefPubMed Mao J, Molenaar AJ, Wheeler TT, Seyfert HM: STAT5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxylase alpha-encoding gene in the mammary gland. J Mol Endocrinol. 2002, 29 (1): 73-88. 10.1677/jme.0.0290073.CrossRefPubMed
11.
go back to reference Nilsson LA, Roepstorff C, Kiens B, Billig H, Ling C: Prolactin suppresses malonyl-CoA concentration in human adipose tissue. Horm Metab Res. 2009, 41 (10): 747-751. 10.1055/s-0029-1224181.CrossRefPubMed Nilsson LA, Roepstorff C, Kiens B, Billig H, Ling C: Prolactin suppresses malonyl-CoA concentration in human adipose tissue. Horm Metab Res. 2009, 41 (10): 747-751. 10.1055/s-0029-1224181.CrossRefPubMed
12.
go back to reference Hogan JC, Stephens JM: The regulation of fatty acid synthase by STAT5A. Diabetes. 2005, 54 (7): 1968-1975. 10.2337/diabetes.54.7.1968.CrossRefPubMed Hogan JC, Stephens JM: The regulation of fatty acid synthase by STAT5A. Diabetes. 2005, 54 (7): 1968-1975. 10.2337/diabetes.54.7.1968.CrossRefPubMed
13.
go back to reference Motoshima H, Goldstein BJ, Igata M, Araki E: AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006, 574 (Pt 1): 63-71. 10.1113/jphysiol.2006.108324.CrossRefPubMedPubMedCentral Motoshima H, Goldstein BJ, Igata M, Araki E: AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006, 574 (Pt 1): 63-71. 10.1113/jphysiol.2006.108324.CrossRefPubMedPubMedCentral
14.
go back to reference Ha J, Daniel S, Broyles SS, Kim KH: Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem. 1994, 269 (35): 22162-22168.PubMed Ha J, Daniel S, Broyles SS, Kim KH: Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem. 1994, 269 (35): 22162-22168.PubMed
15.
go back to reference Murthy MS, Pande SV: Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987, 248 (3): 727-733.CrossRefPubMedPubMedCentral Murthy MS, Pande SV: Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987, 248 (3): 727-733.CrossRefPubMedPubMedCentral
16.
go back to reference Murthy MS, Pande SV: Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci USA. 1987, 84 (2): 378-382. 10.1073/pnas.84.2.378.CrossRefPubMedPubMedCentral Murthy MS, Pande SV: Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci USA. 1987, 84 (2): 378-382. 10.1073/pnas.84.2.378.CrossRefPubMedPubMedCentral
17.
go back to reference McGarry JD, Brown NF: The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997, 244 (1): 1-14. 10.1111/j.1432-1033.1997.00001.x.CrossRefPubMed McGarry JD, Brown NF: The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997, 244 (1): 1-14. 10.1111/j.1432-1033.1997.00001.x.CrossRefPubMed
18.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
19.
go back to reference Bieber LL, Abraham T, Helmrath T: A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem. 1972, 50 (2): 509-518. 10.1016/0003-2697(72)90061-9.CrossRefPubMed Bieber LL, Abraham T, Helmrath T: A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem. 1972, 50 (2): 509-518. 10.1016/0003-2697(72)90061-9.CrossRefPubMed
20.
go back to reference Karlic H, Lohninger S, Koeck T, Lohninger A: Dietary l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. J Histochem Cytochem. 2002, 50 (2): 205-212.CrossRefPubMed Karlic H, Lohninger S, Koeck T, Lohninger A: Dietary l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. J Histochem Cytochem. 2002, 50 (2): 205-212.CrossRefPubMed
21.
go back to reference Shin ES, Cho SY, Lee EH, Lee SJ, Chang IS, Lee TR: Positive regulation of hepatic carnitine palmitoyl transferase 1A (CPT1A) activities by soy isoflavones and L-carnitine. Eur J Nutr. 2006, 45 (3): 159-164. 10.1007/s00394-005-0576-5.CrossRefPubMed Shin ES, Cho SY, Lee EH, Lee SJ, Chang IS, Lee TR: Positive regulation of hepatic carnitine palmitoyl transferase 1A (CPT1A) activities by soy isoflavones and L-carnitine. Eur J Nutr. 2006, 45 (3): 159-164. 10.1007/s00394-005-0576-5.CrossRefPubMed
22.
go back to reference Sanli T, Rashid A, Liu C, Harding S, Bristow RG, Cutz JC, Singh G, Wright J, Tsakiridis T: Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys. 78 (1): 221-229. Sanli T, Rashid A, Liu C, Harding S, Bristow RG, Cutz JC, Singh G, Wright J, Tsakiridis T: Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys. 78 (1): 221-229.
23.
go back to reference Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003, 2 (4): 28-10.1186/1475-4924-2-28.CrossRefPubMedPubMedCentral Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003, 2 (4): 28-10.1186/1475-4924-2-28.CrossRefPubMedPubMedCentral
24.
go back to reference Fogarty S, Hardie DG: Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta. 1804 (3): 581-591. Fogarty S, Hardie DG: Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta. 1804 (3): 581-591.
25.
go back to reference Harper ME, Antoniou A, Villalobos-Menuey E, Russo A, Trauger R, Vendemelio M, George A, Bartholomew R, Carlo D, Shaikh A, et al: Characterization of a novel metabolic strategy used by drug-resistant tumor cells. Faseb J. 2002, 16 (12): 1550-1557. 10.1096/fj.02-0541com.CrossRefPubMed Harper ME, Antoniou A, Villalobos-Menuey E, Russo A, Trauger R, Vendemelio M, George A, Bartholomew R, Carlo D, Shaikh A, et al: Characterization of a novel metabolic strategy used by drug-resistant tumor cells. Faseb J. 2002, 16 (12): 1550-1557. 10.1096/fj.02-0541com.CrossRefPubMed
26.
go back to reference Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H, et al: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 120 (1): 142-156. 10.1172/JCI38942. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H, et al: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 120 (1): 142-156. 10.1172/JCI38942.
27.
go back to reference Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP: Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res. 1997, 3 (11): 2115-2120.PubMed Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP: Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res. 1997, 3 (11): 2115-2120.PubMed
28.
go back to reference Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP: Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res. 1996, 56 (12): 2745-2747.PubMed Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP: Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res. 1996, 56 (12): 2745-2747.PubMed
29.
go back to reference Puig T, Vazquez-Martin A, Relat J, Petriz J, Menendez JA, Porta R, Casals G, Marrero PF, Haro D, Brunet J, et al: Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Res Treat. 2008, 109 (3): 471-479. 10.1007/s10549-007-9678-5.CrossRefPubMed Puig T, Vazquez-Martin A, Relat J, Petriz J, Menendez JA, Porta R, Casals G, Marrero PF, Haro D, Brunet J, et al: Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Res Treat. 2008, 109 (3): 471-479. 10.1007/s10549-007-9678-5.CrossRefPubMed
30.
go back to reference Mazzarelli P, Pucci S, Bonanno E, Sesti F, Calvani M, Spagnoli LG: Carnitine palmitoyltransferase I in human carcinomas: a novel role in histone deacetylation?. Cancer Biol Ther. 2007, 6 (10): 1606-1613. 10.4161/cbt.6.10.4742.CrossRefPubMed Mazzarelli P, Pucci S, Bonanno E, Sesti F, Calvani M, Spagnoli LG: Carnitine palmitoyltransferase I in human carcinomas: a novel role in histone deacetylation?. Cancer Biol Ther. 2007, 6 (10): 1606-1613. 10.4161/cbt.6.10.4742.CrossRefPubMed
31.
go back to reference Kuhajda FP: Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000, 16 (3): 202-208. 10.1016/S0899-9007(99)00266-X.CrossRefPubMed Kuhajda FP: Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000, 16 (3): 202-208. 10.1016/S0899-9007(99)00266-X.CrossRefPubMed
32.
go back to reference Baron A, Migita T, Tang D, Loda M: Fatty acid synthase: a metabolic oncogene in prostate cancer?. J Cell Biochem. 2004, 91 (1): 47-53. 10.1002/jcb.10708.CrossRefPubMed Baron A, Migita T, Tang D, Loda M: Fatty acid synthase: a metabolic oncogene in prostate cancer?. J Cell Biochem. 2004, 91 (1): 47-53. 10.1002/jcb.10708.CrossRefPubMed
33.
go back to reference Bruce CR, Brolin C, Turner N, Cleasby ME, van der Leij FR, Cooney GJ, Kraegen EW: Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. Am J Physiol Endocrinol Metab. 2007, 292 (4): E1231-1237. 10.1152/ajpendo.00561.2006.CrossRefPubMed Bruce CR, Brolin C, Turner N, Cleasby ME, van der Leij FR, Cooney GJ, Kraegen EW: Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. Am J Physiol Endocrinol Metab. 2007, 292 (4): E1231-1237. 10.1152/ajpendo.00561.2006.CrossRefPubMed
34.
go back to reference Weinstein I, Cook GA, Heimberg M: Regulation by oestrogen of carnitine palmitoyltransferase in hepatic mitochondria. Biochem J. 1986, 237 (2): 593-596.CrossRefPubMedPubMedCentral Weinstein I, Cook GA, Heimberg M: Regulation by oestrogen of carnitine palmitoyltransferase in hepatic mitochondria. Biochem J. 1986, 237 (2): 593-596.CrossRefPubMedPubMedCentral
35.
go back to reference O'Sullivan AJ, Crampton LJ, Freund J, Ho KK: The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J Clin Invest. 1998, 102 (5): 1035-1040.CrossRefPubMedPubMedCentral O'Sullivan AJ, Crampton LJ, Freund J, Ho KK: The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J Clin Invest. 1998, 102 (5): 1035-1040.CrossRefPubMedPubMedCentral
36.
go back to reference O'Sullivan AJ, Hoffman DM, Ho KK: Estrogen, lipid oxidation, and body fat. N Engl J Med. 1995, 333 (10): 669-670.CrossRefPubMed O'Sullivan AJ, Hoffman DM, Ho KK: Estrogen, lipid oxidation, and body fat. N Engl J Med. 1995, 333 (10): 669-670.CrossRefPubMed
37.
go back to reference Hardie DG, Scott JW, Pan DA, Hudson ER: Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003, 546 (1): 113-120. 10.1016/S0014-5793(03)00560-X.CrossRefPubMed Hardie DG, Scott JW, Pan DA, Hudson ER: Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003, 546 (1): 113-120. 10.1016/S0014-5793(03)00560-X.CrossRefPubMed
38.
go back to reference Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, et al: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003, 31 (Pt 1): 162-168.CrossRefPubMed Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, et al: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003, 31 (Pt 1): 162-168.CrossRefPubMed
39.
go back to reference Hardie DG: Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta. 1992, 1123 (3): 231-238.CrossRefPubMed Hardie DG: Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta. 1992, 1123 (3): 231-238.CrossRefPubMed
40.
go back to reference Park H, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB, Saha AK: Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem. 2002, 277 (36): 32571-32577. 10.1074/jbc.M201692200.CrossRefPubMed Park H, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB, Saha AK: Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem. 2002, 277 (36): 32571-32577. 10.1074/jbc.M201692200.CrossRefPubMed
41.
go back to reference Ferre P, Azzout-Marniche D, Foufelle F: AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans. 2003, 31 (Pt 1): 220-223.CrossRefPubMed Ferre P, Azzout-Marniche D, Foufelle F: AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans. 2003, 31 (Pt 1): 220-223.CrossRefPubMed
42.
go back to reference Hardie DG, Hawley SA, Scott JW: AMP-activated protein kinase--development of the energy sensor concept. J Physiol. 2006, 574 (Pt 1): 7-15. 10.1113/jphysiol.2006.108944.CrossRefPubMedPubMedCentral Hardie DG, Hawley SA, Scott JW: AMP-activated protein kinase--development of the energy sensor concept. J Physiol. 2006, 574 (Pt 1): 7-15. 10.1113/jphysiol.2006.108944.CrossRefPubMedPubMedCentral
43.
go back to reference Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005, 2 (1): 9-19. 10.1016/j.cmet.2005.05.009.CrossRefPubMed Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005, 2 (1): 9-19. 10.1016/j.cmet.2005.05.009.CrossRefPubMed
44.
go back to reference Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, et al: A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA. 2006, 103 (46): 17378-17383. 10.1073/pnas.0604708103.CrossRefPubMedPubMedCentral Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, et al: A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA. 2006, 103 (46): 17378-17383. 10.1073/pnas.0604708103.CrossRefPubMedPubMedCentral
45.
go back to reference Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000, 20 (18): 6704-6711. 10.1128/MCB.20.18.6704-6711.2000.CrossRefPubMedPubMedCentral Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000, 20 (18): 6704-6711. 10.1128/MCB.20.18.6704-6711.2000.CrossRefPubMedPubMedCentral
46.
go back to reference Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001, 108 (8): 1167-1174.CrossRefPubMedPubMedCentral Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001, 108 (8): 1167-1174.CrossRefPubMedPubMedCentral
47.
go back to reference Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T: Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem. 2001, 276 (42): 38341-38344. 10.1074/jbc.C100316200.CrossRefPubMed Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T: Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem. 2001, 276 (42): 38341-38344. 10.1074/jbc.C100316200.CrossRefPubMed
48.
go back to reference Yoon M: The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol Res. 2009, 60 (3): 151-159. 10.1016/j.phrs.2009.02.004.CrossRefPubMed Yoon M: The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol Res. 2009, 60 (3): 151-159. 10.1016/j.phrs.2009.02.004.CrossRefPubMed
49.
go back to reference Tachibana K, Kobayashi Y, Tanaka T, Tagami M, Sugiyama A, Katayama T, Ueda C, Yamasaki D, Ishimoto K, Sumitomo M, et al: Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nucl Recept. 2005, 3: 3-10.1186/1478-1336-3-3.CrossRefPubMedPubMedCentral Tachibana K, Kobayashi Y, Tanaka T, Tagami M, Sugiyama A, Katayama T, Ueda C, Yamasaki D, Ishimoto K, Sumitomo M, et al: Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nucl Recept. 2005, 3: 3-10.1186/1478-1336-3-3.CrossRefPubMedPubMedCentral
50.
go back to reference Carver KC, Arendt LM, Schuler LA: Complex prolactin crosstalk in breast cancer: new therapeutic implications. Mol Cell Endocrinol. 2009, 307 (1-2): 1-7. 10.1016/j.mce.2009.03.014.CrossRefPubMedPubMedCentral Carver KC, Arendt LM, Schuler LA: Complex prolactin crosstalk in breast cancer: new therapeutic implications. Mol Cell Endocrinol. 2009, 307 (1-2): 1-7. 10.1016/j.mce.2009.03.014.CrossRefPubMedPubMedCentral
51.
go back to reference Warburg O: On the origin of cancer cells. Science. 1956, 123 (3191): 309-314. 10.1126/science.123.3191.309.CrossRefPubMed Warburg O: On the origin of cancer cells. Science. 1956, 123 (3191): 309-314. 10.1126/science.123.3191.309.CrossRefPubMed
52.
go back to reference Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 1997, 272 (6): 3324-3329. 10.1074/jbc.272.6.3324.CrossRefPubMed Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 1997, 272 (6): 3324-3329. 10.1074/jbc.272.6.3324.CrossRefPubMed
53.
go back to reference Hernlund E, Ihrlund LS, Khan O, Ates YO, Linder S, Panaretakis T, Shoshan MC: Potentiation of chemotherapeutic drugs by energy metabolism inhibitors 2-deoxyglucose and etomoxir. Int J Cancer. 2008, 123 (2): 476-483. 10.1002/ijc.23525.CrossRefPubMed Hernlund E, Ihrlund LS, Khan O, Ates YO, Linder S, Panaretakis T, Shoshan MC: Potentiation of chemotherapeutic drugs by energy metabolism inhibitors 2-deoxyglucose and etomoxir. Int J Cancer. 2008, 123 (2): 476-483. 10.1002/ijc.23525.CrossRefPubMed
Metadata
Title
Establishing a relationship between prolactin and altered fatty acid β-Oxidation via carnitine palmitoyl transferase 1 in breast cancer cells
Authors
Katja Linher-Melville
Stephanie Zantinge
Toran Sanli
Hertzel Gerstein
Theodoros Tsakiridis
Gurmit Singh
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-56

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine